Mohammad Bagher Kazemi Balgeshir, Shiva Salahvarzi
{"title":"论来自 3-Sasakian 统计流形的统计潜流","authors":"Mohammad Bagher Kazemi Balgeshir, Shiva Salahvarzi","doi":"10.1016/j.difgeo.2024.102124","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we define and characterize 3-Sasakian statistical manifolds and then investigate statistical submersions from 3-Sasakian statistical manifolds. We prove that invariant statistical submersions from 3-Sasakian statistical manifolds with vertical structure vector fields have 3-Sasakian statistical totally geodesic fibers. Moreover, the base space admits a quaternionic Kähler statistical structure. We construct non-trivial examples to illustrate some results of the paper.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On statistical submersions from 3-Sasakian statistical manifolds\",\"authors\":\"Mohammad Bagher Kazemi Balgeshir, Shiva Salahvarzi\",\"doi\":\"10.1016/j.difgeo.2024.102124\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we define and characterize 3-Sasakian statistical manifolds and then investigate statistical submersions from 3-Sasakian statistical manifolds. We prove that invariant statistical submersions from 3-Sasakian statistical manifolds with vertical structure vector fields have 3-Sasakian statistical totally geodesic fibers. Moreover, the base space admits a quaternionic Kähler statistical structure. We construct non-trivial examples to illustrate some results of the paper.</p></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-03-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0926224524000172\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0926224524000172","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
On statistical submersions from 3-Sasakian statistical manifolds
In this paper, we define and characterize 3-Sasakian statistical manifolds and then investigate statistical submersions from 3-Sasakian statistical manifolds. We prove that invariant statistical submersions from 3-Sasakian statistical manifolds with vertical structure vector fields have 3-Sasakian statistical totally geodesic fibers. Moreover, the base space admits a quaternionic Kähler statistical structure. We construct non-trivial examples to illustrate some results of the paper.