论来自 3-Sasakian 统计流形的统计潜流

IF 0.6 4区 数学 Q3 MATHEMATICS
Mohammad Bagher Kazemi Balgeshir, Shiva Salahvarzi
{"title":"论来自 3-Sasakian 统计流形的统计潜流","authors":"Mohammad Bagher Kazemi Balgeshir,&nbsp;Shiva Salahvarzi","doi":"10.1016/j.difgeo.2024.102124","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we define and characterize 3-Sasakian statistical manifolds and then investigate statistical submersions from 3-Sasakian statistical manifolds. We prove that invariant statistical submersions from 3-Sasakian statistical manifolds with vertical structure vector fields have 3-Sasakian statistical totally geodesic fibers. Moreover, the base space admits a quaternionic Kähler statistical structure. We construct non-trivial examples to illustrate some results of the paper.</p></div>","PeriodicalId":51010,"journal":{"name":"Differential Geometry and its Applications","volume":"94 ","pages":"Article 102124"},"PeriodicalIF":0.6000,"publicationDate":"2024-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On statistical submersions from 3-Sasakian statistical manifolds\",\"authors\":\"Mohammad Bagher Kazemi Balgeshir,&nbsp;Shiva Salahvarzi\",\"doi\":\"10.1016/j.difgeo.2024.102124\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we define and characterize 3-Sasakian statistical manifolds and then investigate statistical submersions from 3-Sasakian statistical manifolds. We prove that invariant statistical submersions from 3-Sasakian statistical manifolds with vertical structure vector fields have 3-Sasakian statistical totally geodesic fibers. Moreover, the base space admits a quaternionic Kähler statistical structure. We construct non-trivial examples to illustrate some results of the paper.</p></div>\",\"PeriodicalId\":51010,\"journal\":{\"name\":\"Differential Geometry and its Applications\",\"volume\":\"94 \",\"pages\":\"Article 102124\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-03-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Differential Geometry and its Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0926224524000172\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Differential Geometry and its Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0926224524000172","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们定义并描述了 3-Sasakian 统计流形,然后研究了来自 3-Sasakian 统计流形的统计潜流。我们证明,来自具有垂直结构向量场的 3-Sasakian 统计流形的不变统计潜流具有 3-Sasakian 统计全大地纤维。此外,基空间还具有四元凯勒统计结构。我们构建了一些非难例来说明本文的一些结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On statistical submersions from 3-Sasakian statistical manifolds

In this paper, we define and characterize 3-Sasakian statistical manifolds and then investigate statistical submersions from 3-Sasakian statistical manifolds. We prove that invariant statistical submersions from 3-Sasakian statistical manifolds with vertical structure vector fields have 3-Sasakian statistical totally geodesic fibers. Moreover, the base space admits a quaternionic Kähler statistical structure. We construct non-trivial examples to illustrate some results of the paper.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.00
自引率
20.00%
发文量
81
审稿时长
6-12 weeks
期刊介绍: Differential Geometry and its Applications publishes original research papers and survey papers in differential geometry and in all interdisciplinary areas in mathematics which use differential geometric methods and investigate geometrical structures. The following main areas are covered: differential equations on manifolds, global analysis, Lie groups, local and global differential geometry, the calculus of variations on manifolds, topology of manifolds, and mathematical physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信