交点流形和接触流形的子流形的豪斯多夫极限

IF 0.6 4区 数学 Q3 MATHEMATICS
Jean-Philippe Chassé
{"title":"交点流形和接触流形的子流形的豪斯多夫极限","authors":"Jean-Philippe Chassé","doi":"10.1016/j.difgeo.2024.102123","DOIUrl":null,"url":null,"abstract":"<div><p>We study sequences of immersions respecting bounds coming from Riemannian geometry and apply the ensuing results to the study of sequences of submanifolds of symplectic and contact manifolds. This allows us to study the subtle interaction between the Hausdorff metric and the Lagrangian Hofer and spectral metrics. In the process, we get proofs of metric versions of the nearby Lagrangian conjecture and of the Viterbo conjecture on the spectral norm. We also get <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>0</mn></mrow></msup></math></span>-rigidity results for a vast class of important submanifolds of symplectic and contact manifolds in the presence of Riemannian bounds. Likewise, we get a Lagrangian generalization of results of Hofer <span>[19]</span> and Viterbo <span>[42]</span> on simultaneous <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>0</mn></mrow></msup></math></span> and Hofer/spectral limits — even without any such bounds.</p></div>","PeriodicalId":51010,"journal":{"name":"Differential Geometry and its Applications","volume":"94 ","pages":"Article 102123"},"PeriodicalIF":0.6000,"publicationDate":"2024-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0926224524000160/pdfft?md5=e5fec57c1405e3388aff79318f022cc4&pid=1-s2.0-S0926224524000160-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Hausdorff limits of submanifolds of symplectic and contact manifolds\",\"authors\":\"Jean-Philippe Chassé\",\"doi\":\"10.1016/j.difgeo.2024.102123\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We study sequences of immersions respecting bounds coming from Riemannian geometry and apply the ensuing results to the study of sequences of submanifolds of symplectic and contact manifolds. This allows us to study the subtle interaction between the Hausdorff metric and the Lagrangian Hofer and spectral metrics. In the process, we get proofs of metric versions of the nearby Lagrangian conjecture and of the Viterbo conjecture on the spectral norm. We also get <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>0</mn></mrow></msup></math></span>-rigidity results for a vast class of important submanifolds of symplectic and contact manifolds in the presence of Riemannian bounds. Likewise, we get a Lagrangian generalization of results of Hofer <span>[19]</span> and Viterbo <span>[42]</span> on simultaneous <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>0</mn></mrow></msup></math></span> and Hofer/spectral limits — even without any such bounds.</p></div>\",\"PeriodicalId\":51010,\"journal\":{\"name\":\"Differential Geometry and its Applications\",\"volume\":\"94 \",\"pages\":\"Article 102123\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-03-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0926224524000160/pdfft?md5=e5fec57c1405e3388aff79318f022cc4&pid=1-s2.0-S0926224524000160-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Differential Geometry and its Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0926224524000160\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Differential Geometry and its Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0926224524000160","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们研究的浸入序列尊重来自黎曼几何的约束,并将随之而来的结果应用于研究交错流形和接触流形的子流形序列。这使我们能够研究豪斯多夫度量与拉格朗日霍弗度量和谱度量之间的微妙互动。在此过程中,我们得到了附近拉格朗日猜想的度量版本和关于谱规范的维特博猜想的证明。我们还得到了交点流形和接触流形的一大类重要子流形在黎曼约束下的 C0 刚性结果。同样,我们得到了霍弗[19]和维特博[42]关于同时 C0 和霍弗/谱极限结果的拉格朗日概括--即使没有任何此类约束。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hausdorff limits of submanifolds of symplectic and contact manifolds

We study sequences of immersions respecting bounds coming from Riemannian geometry and apply the ensuing results to the study of sequences of submanifolds of symplectic and contact manifolds. This allows us to study the subtle interaction between the Hausdorff metric and the Lagrangian Hofer and spectral metrics. In the process, we get proofs of metric versions of the nearby Lagrangian conjecture and of the Viterbo conjecture on the spectral norm. We also get C0-rigidity results for a vast class of important submanifolds of symplectic and contact manifolds in the presence of Riemannian bounds. Likewise, we get a Lagrangian generalization of results of Hofer [19] and Viterbo [42] on simultaneous C0 and Hofer/spectral limits — even without any such bounds.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.00
自引率
20.00%
发文量
81
审稿时长
6-12 weeks
期刊介绍: Differential Geometry and its Applications publishes original research papers and survey papers in differential geometry and in all interdisciplinary areas in mathematics which use differential geometric methods and investigate geometrical structures. The following main areas are covered: differential equations on manifolds, global analysis, Lie groups, local and global differential geometry, the calculus of variations on manifolds, topology of manifolds, and mathematical physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信