交感列共形上代数的结构

IF 0.6 4区 数学 Q3 MATHEMATICS
Meher Abdaoui
{"title":"交感列共形上代数的结构","authors":"Meher Abdaoui","doi":"10.1016/j.difgeo.2024.102122","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we'll introduce the concept of sympathetic Lie conformal superalgebras and show that some classical properties of Lie conformal superalgebras are still valid for sympathetic Lie conformal superalgebras. We prove that the unique decomposition of each sympathetic Lie conformal superalgebra into a direct sum of indecomposable sympathetic ideals. We also show the existence of a greatest sympathetic ideal and a sympathetic decomposition in every perfect Lie conformal superalgebra. In the end, we also study the ideal <span><math><mi>I</mi></math></span> of a Lie conformal superalgebra <span><math><mi>R</mi></math></span> such that <span><math><mi>R</mi><mo>/</mo><mi>I</mi></math></span> is a sympathetic Lie conformal superalgebra.</p></div>","PeriodicalId":51010,"journal":{"name":"Differential Geometry and its Applications","volume":"94 ","pages":"Article 102122"},"PeriodicalIF":0.6000,"publicationDate":"2024-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Structures of sympathetic Lie conformal superalgebras\",\"authors\":\"Meher Abdaoui\",\"doi\":\"10.1016/j.difgeo.2024.102122\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we'll introduce the concept of sympathetic Lie conformal superalgebras and show that some classical properties of Lie conformal superalgebras are still valid for sympathetic Lie conformal superalgebras. We prove that the unique decomposition of each sympathetic Lie conformal superalgebra into a direct sum of indecomposable sympathetic ideals. We also show the existence of a greatest sympathetic ideal and a sympathetic decomposition in every perfect Lie conformal superalgebra. In the end, we also study the ideal <span><math><mi>I</mi></math></span> of a Lie conformal superalgebra <span><math><mi>R</mi></math></span> such that <span><math><mi>R</mi><mo>/</mo><mi>I</mi></math></span> is a sympathetic Lie conformal superalgebra.</p></div>\",\"PeriodicalId\":51010,\"journal\":{\"name\":\"Differential Geometry and its Applications\",\"volume\":\"94 \",\"pages\":\"Article 102122\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-03-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Differential Geometry and its Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0926224524000159\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Differential Geometry and its Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0926224524000159","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们将介绍交感李共形上代数的概念,并证明李共形上代数的一些经典性质对交感李共形上代数仍然有效。我们证明了每个交感李共形上代数的唯一分解为不可分解交感理想的直接和。我们还证明了每个完备的 Lie 保角上代数中都存在一个最大交感理想和一个交感分解。最后,我们还研究了一个 Lie 保角上代数 R 的理想 I,使得 R/I 是一个交感 Lie 保角上代数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Structures of sympathetic Lie conformal superalgebras

In this paper, we'll introduce the concept of sympathetic Lie conformal superalgebras and show that some classical properties of Lie conformal superalgebras are still valid for sympathetic Lie conformal superalgebras. We prove that the unique decomposition of each sympathetic Lie conformal superalgebra into a direct sum of indecomposable sympathetic ideals. We also show the existence of a greatest sympathetic ideal and a sympathetic decomposition in every perfect Lie conformal superalgebra. In the end, we also study the ideal I of a Lie conformal superalgebra R such that R/I is a sympathetic Lie conformal superalgebra.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.00
自引率
20.00%
发文量
81
审稿时长
6-12 weeks
期刊介绍: Differential Geometry and its Applications publishes original research papers and survey papers in differential geometry and in all interdisciplinary areas in mathematics which use differential geometric methods and investigate geometrical structures. The following main areas are covered: differential equations on manifolds, global analysis, Lie groups, local and global differential geometry, the calculus of variations on manifolds, topology of manifolds, and mathematical physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信