{"title":"交感列共形上代数的结构","authors":"Meher Abdaoui","doi":"10.1016/j.difgeo.2024.102122","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we'll introduce the concept of sympathetic Lie conformal superalgebras and show that some classical properties of Lie conformal superalgebras are still valid for sympathetic Lie conformal superalgebras. We prove that the unique decomposition of each sympathetic Lie conformal superalgebra into a direct sum of indecomposable sympathetic ideals. We also show the existence of a greatest sympathetic ideal and a sympathetic decomposition in every perfect Lie conformal superalgebra. In the end, we also study the ideal <span><math><mi>I</mi></math></span> of a Lie conformal superalgebra <span><math><mi>R</mi></math></span> such that <span><math><mi>R</mi><mo>/</mo><mi>I</mi></math></span> is a sympathetic Lie conformal superalgebra.</p></div>","PeriodicalId":51010,"journal":{"name":"Differential Geometry and its Applications","volume":"94 ","pages":"Article 102122"},"PeriodicalIF":0.6000,"publicationDate":"2024-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Structures of sympathetic Lie conformal superalgebras\",\"authors\":\"Meher Abdaoui\",\"doi\":\"10.1016/j.difgeo.2024.102122\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we'll introduce the concept of sympathetic Lie conformal superalgebras and show that some classical properties of Lie conformal superalgebras are still valid for sympathetic Lie conformal superalgebras. We prove that the unique decomposition of each sympathetic Lie conformal superalgebra into a direct sum of indecomposable sympathetic ideals. We also show the existence of a greatest sympathetic ideal and a sympathetic decomposition in every perfect Lie conformal superalgebra. In the end, we also study the ideal <span><math><mi>I</mi></math></span> of a Lie conformal superalgebra <span><math><mi>R</mi></math></span> such that <span><math><mi>R</mi><mo>/</mo><mi>I</mi></math></span> is a sympathetic Lie conformal superalgebra.</p></div>\",\"PeriodicalId\":51010,\"journal\":{\"name\":\"Differential Geometry and its Applications\",\"volume\":\"94 \",\"pages\":\"Article 102122\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-03-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Differential Geometry and its Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0926224524000159\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Differential Geometry and its Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0926224524000159","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
Structures of sympathetic Lie conformal superalgebras
In this paper, we'll introduce the concept of sympathetic Lie conformal superalgebras and show that some classical properties of Lie conformal superalgebras are still valid for sympathetic Lie conformal superalgebras. We prove that the unique decomposition of each sympathetic Lie conformal superalgebra into a direct sum of indecomposable sympathetic ideals. We also show the existence of a greatest sympathetic ideal and a sympathetic decomposition in every perfect Lie conformal superalgebra. In the end, we also study the ideal of a Lie conformal superalgebra such that is a sympathetic Lie conformal superalgebra.
期刊介绍:
Differential Geometry and its Applications publishes original research papers and survey papers in differential geometry and in all interdisciplinary areas in mathematics which use differential geometric methods and investigate geometrical structures. The following main areas are covered: differential equations on manifolds, global analysis, Lie groups, local and global differential geometry, the calculus of variations on manifolds, topology of manifolds, and mathematical physics.