Gromoll–Meyer's actions and the geometry of (exotic) spacetimes

IF 0.6 4区 数学 Q3 MATHEMATICS
Leonardo F. Cavenaghi, Lino Grama
{"title":"Gromoll–Meyer's actions and the geometry of (exotic) spacetimes","authors":"Leonardo F. Cavenaghi,&nbsp;Lino Grama","doi":"10.1016/j.difgeo.2024.102121","DOIUrl":null,"url":null,"abstract":"<div><p>Since the advent of new pairwise non-diffeomorphic structures on smooth manifolds, it has been questioned whether two topologically identical manifolds could admit different geometries. Not surprisingly, physicists have wondered whether a different smooth structure assumption to some classical known model could produce different physical meanings. Motivated by the works <span>[27]</span>, <span>[2]</span>, <span>[3]</span>, <span>[18]</span>, in this paper, we inaugurate a very computational manner to produce physical models on classical and exotic spheres that can be built equivariantly, such as the classical Gromoll–Meyer exotic spheres. As first applications, we produce Lorentzian metrics on homeomorphic but not diffeomorphic manifolds that enjoy the same physical properties, such as geodesic completeness, positive Ricci curvature, and compatible time orientation. These constructions can be pulled back to higher models, such as exotic ten spheres bounding spin manifolds, to be approached in forthcoming papers.</p></div>","PeriodicalId":51010,"journal":{"name":"Differential Geometry and its Applications","volume":"94 ","pages":"Article 102121"},"PeriodicalIF":0.6000,"publicationDate":"2024-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Differential Geometry and its Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0926224524000147","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Since the advent of new pairwise non-diffeomorphic structures on smooth manifolds, it has been questioned whether two topologically identical manifolds could admit different geometries. Not surprisingly, physicists have wondered whether a different smooth structure assumption to some classical known model could produce different physical meanings. Motivated by the works [27], [2], [3], [18], in this paper, we inaugurate a very computational manner to produce physical models on classical and exotic spheres that can be built equivariantly, such as the classical Gromoll–Meyer exotic spheres. As first applications, we produce Lorentzian metrics on homeomorphic but not diffeomorphic manifolds that enjoy the same physical properties, such as geodesic completeness, positive Ricci curvature, and compatible time orientation. These constructions can be pulled back to higher models, such as exotic ten spheres bounding spin manifolds, to be approached in forthcoming papers.

格罗莫尔-迈耶行动与(奇异)时空几何
自从在光滑流形上出现了新的成对非异构结构以来,人们一直在质疑两个拓扑上完全相同的流形是否会有不同的几何结构。毫不奇怪,物理学家们也想知道,对某些经典已知模型假设不同的光滑结构是否会产生不同的物理意义。受[27]、[2]、[3]、[18]等著作的启发,我们在本文中开创了一种非常容易计算的方法,在经典球面和奇异球面上建立可等价建立的物理模型,如经典的格罗莫尔-迈耶奇异球面。作为第一个应用,我们在同态而非差态流形上建立了洛伦兹度量,这些度量具有相同的物理特性,如大地完备性、正里奇曲率和相容的时间方向。这些构造可以拉回到更高的模型,比如即将发表的论文中讨论的以自旋流形为边界的奇异十球。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.00
自引率
20.00%
发文量
81
审稿时长
6-12 weeks
期刊介绍: Differential Geometry and its Applications publishes original research papers and survey papers in differential geometry and in all interdisciplinary areas in mathematics which use differential geometric methods and investigate geometrical structures. The following main areas are covered: differential equations on manifolds, global analysis, Lie groups, local and global differential geometry, the calculus of variations on manifolds, topology of manifolds, and mathematical physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信