{"title":"论具有可逆道格拉斯曲率的芬斯勒度量","authors":"Guangzu Chen , Jiayu Liao, Lihong Liu","doi":"10.1016/j.difgeo.2024.102137","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we find a new tensor which is responsible for Finsler metrics with reversible geodesics. Using this tensor, we can prove that Finsler metrics are Douglas metrics if and only if they have reversible geodesics and Douglas curvature. Further, we focus on Finsler metrics with reversible Douglas curvature.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On Finsler metrics with reversible Douglas curvature\",\"authors\":\"Guangzu Chen , Jiayu Liao, Lihong Liu\",\"doi\":\"10.1016/j.difgeo.2024.102137\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we find a new tensor which is responsible for Finsler metrics with reversible geodesics. Using this tensor, we can prove that Finsler metrics are Douglas metrics if and only if they have reversible geodesics and Douglas curvature. Further, we focus on Finsler metrics with reversible Douglas curvature.</p></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-04-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0926224524000305\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0926224524000305","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
On Finsler metrics with reversible Douglas curvature
In this paper, we find a new tensor which is responsible for Finsler metrics with reversible geodesics. Using this tensor, we can prove that Finsler metrics are Douglas metrics if and only if they have reversible geodesics and Douglas curvature. Further, we focus on Finsler metrics with reversible Douglas curvature.