{"title":"A Reilly type integral formula and its applications","authors":"Guangyue Huang, Bingqing Ma, Mingfang Zhu","doi":"10.1016/j.difgeo.2024.102136","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we achieve a Reilly type integral formula associated with the <em>ϕ</em>-Laplacian. As its applications, we obtain Heintze-Karcher and Minkowski type inequalities. Furthermore, almost Schur lemmas are also given. They recover the partial results of Li and Xia in <span>[17]</span>. On the other hand, we also study eigenvalue problem for Wentzell boundary conditions and obtain eigenvalue relationships.</p></div>","PeriodicalId":51010,"journal":{"name":"Differential Geometry and its Applications","volume":"94 ","pages":"Article 102136"},"PeriodicalIF":0.6000,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Differential Geometry and its Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0926224524000299","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we achieve a Reilly type integral formula associated with the ϕ-Laplacian. As its applications, we obtain Heintze-Karcher and Minkowski type inequalities. Furthermore, almost Schur lemmas are also given. They recover the partial results of Li and Xia in [17]. On the other hand, we also study eigenvalue problem for Wentzell boundary conditions and obtain eigenvalue relationships.
期刊介绍:
Differential Geometry and its Applications publishes original research papers and survey papers in differential geometry and in all interdisciplinary areas in mathematics which use differential geometric methods and investigate geometrical structures. The following main areas are covered: differential equations on manifolds, global analysis, Lie groups, local and global differential geometry, the calculus of variations on manifolds, topology of manifolds, and mathematical physics.