黎曼流形上的协变薛定谔算子和 L2- 消失特性

IF 0.6 4区 数学 Q3 MATHEMATICS
{"title":"黎曼流形上的协变薛定谔算子和 L2- 消失特性","authors":"","doi":"10.1016/j.difgeo.2024.102191","DOIUrl":null,"url":null,"abstract":"<div><p>Let <em>M</em> be a complete Riemannian manifold satisfying a weighted Poincaré inequality, and let <span><math><mi>E</mi></math></span> be a Hermitian vector bundle over <em>M</em> equipped with a metric covariant derivative ∇. We consider the operator <span><math><msub><mrow><mi>H</mi></mrow><mrow><mi>X</mi><mo>,</mo><mi>V</mi></mrow></msub><mo>=</mo><msup><mrow><mi>∇</mi></mrow><mrow><mi>†</mi></mrow></msup><mi>∇</mi><mo>+</mo><msub><mrow><mi>∇</mi></mrow><mrow><mi>X</mi></mrow></msub><mo>+</mo><mi>V</mi></math></span>, where <span><math><msup><mrow><mi>∇</mi></mrow><mrow><mi>†</mi></mrow></msup></math></span> is the formal adjoint of ∇ with respect to the inner product in the space of square-integrable sections of <span><math><mi>E</mi></math></span>, <em>X</em> is a smooth (real) vector field on <em>M</em>, and <em>V</em> is a fiberwise self-adjoint, smooth section of the endomorphism bundle <span><math><mi>End</mi><mspace></mspace><mi>E</mi></math></span>. We give a sufficient condition for the triviality of the <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>-kernel of <span><math><msub><mrow><mi>H</mi></mrow><mrow><mi>X</mi><mo>,</mo><mi>V</mi></mrow></msub></math></span>. As a corollary, putting <span><math><mi>X</mi><mo>≡</mo><mn>0</mn></math></span> and working in the setting of a Clifford module equipped with a Clifford connection ∇, we obtain the triviality of the <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>-kernel of <span><math><msup><mrow><mi>D</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>, where <em>D</em> is the Dirac operator corresponding to ∇. In particular, when <span><math><mi>E</mi><mo>=</mo><msubsup><mrow><mi>Λ</mi></mrow><mrow><mi>C</mi></mrow><mrow><mi>k</mi></mrow></msubsup><msup><mrow><mi>T</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mi>M</mi></math></span> and <span><math><msup><mrow><mi>D</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> is the Hodge–deRham Laplacian on (complex-valued) <em>k</em>-forms, we recover some recent vanishing results for <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>-harmonic (complex-valued) <em>k</em>-forms.</p></div>","PeriodicalId":51010,"journal":{"name":"Differential Geometry and its Applications","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Covariant Schrödinger operator and L2-vanishing property on Riemannian manifolds\",\"authors\":\"\",\"doi\":\"10.1016/j.difgeo.2024.102191\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Let <em>M</em> be a complete Riemannian manifold satisfying a weighted Poincaré inequality, and let <span><math><mi>E</mi></math></span> be a Hermitian vector bundle over <em>M</em> equipped with a metric covariant derivative ∇. We consider the operator <span><math><msub><mrow><mi>H</mi></mrow><mrow><mi>X</mi><mo>,</mo><mi>V</mi></mrow></msub><mo>=</mo><msup><mrow><mi>∇</mi></mrow><mrow><mi>†</mi></mrow></msup><mi>∇</mi><mo>+</mo><msub><mrow><mi>∇</mi></mrow><mrow><mi>X</mi></mrow></msub><mo>+</mo><mi>V</mi></math></span>, where <span><math><msup><mrow><mi>∇</mi></mrow><mrow><mi>†</mi></mrow></msup></math></span> is the formal adjoint of ∇ with respect to the inner product in the space of square-integrable sections of <span><math><mi>E</mi></math></span>, <em>X</em> is a smooth (real) vector field on <em>M</em>, and <em>V</em> is a fiberwise self-adjoint, smooth section of the endomorphism bundle <span><math><mi>End</mi><mspace></mspace><mi>E</mi></math></span>. We give a sufficient condition for the triviality of the <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>-kernel of <span><math><msub><mrow><mi>H</mi></mrow><mrow><mi>X</mi><mo>,</mo><mi>V</mi></mrow></msub></math></span>. As a corollary, putting <span><math><mi>X</mi><mo>≡</mo><mn>0</mn></math></span> and working in the setting of a Clifford module equipped with a Clifford connection ∇, we obtain the triviality of the <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>-kernel of <span><math><msup><mrow><mi>D</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>, where <em>D</em> is the Dirac operator corresponding to ∇. In particular, when <span><math><mi>E</mi><mo>=</mo><msubsup><mrow><mi>Λ</mi></mrow><mrow><mi>C</mi></mrow><mrow><mi>k</mi></mrow></msubsup><msup><mrow><mi>T</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mi>M</mi></math></span> and <span><math><msup><mrow><mi>D</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> is the Hodge–deRham Laplacian on (complex-valued) <em>k</em>-forms, we recover some recent vanishing results for <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>-harmonic (complex-valued) <em>k</em>-forms.</p></div>\",\"PeriodicalId\":51010,\"journal\":{\"name\":\"Differential Geometry and its Applications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Differential Geometry and its Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0926224524000846\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Differential Geometry and its Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0926224524000846","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

假设 M 是满足加权波恩卡列不等式的完整黎曼流形,假设 E 是 M 上的赫尔墨斯向量束,并配有度量协变导数∇。我们考虑算子 HX,V=∇†∇+∇X+V,其中∇† 是∇关于 E 的平方可积分截面空间内积的形式邻接,X 是 M 上的光滑(实)向量场,V 是内形束 EndE 的纤维自交光滑截面。我们给出了 HX,V 的 L2 内核三性的充分条件。作为推论,假设 X≡0 并在配备了克利福德连接∇的克利福德模块的环境中工作,我们会得到 D2 的 L2 内核的三性,其中 D 是对应于∇的狄拉克算子。特别是,当 E=ΛCkT⁎M 和 D2 是(复值)k 形式上的霍奇-德拉姆拉普拉卡时,我们恢复了 L2 谐波(复值)k 形式的一些最新消失结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Covariant Schrödinger operator and L2-vanishing property on Riemannian manifolds

Let M be a complete Riemannian manifold satisfying a weighted Poincaré inequality, and let E be a Hermitian vector bundle over M equipped with a metric covariant derivative ∇. We consider the operator HX,V=+X+V, where is the formal adjoint of ∇ with respect to the inner product in the space of square-integrable sections of E, X is a smooth (real) vector field on M, and V is a fiberwise self-adjoint, smooth section of the endomorphism bundle EndE. We give a sufficient condition for the triviality of the L2-kernel of HX,V. As a corollary, putting X0 and working in the setting of a Clifford module equipped with a Clifford connection ∇, we obtain the triviality of the L2-kernel of D2, where D is the Dirac operator corresponding to ∇. In particular, when E=ΛCkTM and D2 is the Hodge–deRham Laplacian on (complex-valued) k-forms, we recover some recent vanishing results for L2-harmonic (complex-valued) k-forms.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.00
自引率
20.00%
发文量
81
审稿时长
6-12 weeks
期刊介绍: Differential Geometry and its Applications publishes original research papers and survey papers in differential geometry and in all interdisciplinary areas in mathematics which use differential geometric methods and investigate geometrical structures. The following main areas are covered: differential equations on manifolds, global analysis, Lie groups, local and global differential geometry, the calculus of variations on manifolds, topology of manifolds, and mathematical physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信