{"title":"Time-optimal solutions of Zermelo's navigation problem with moving obstacles","authors":"","doi":"10.1016/j.difgeo.2024.102177","DOIUrl":null,"url":null,"abstract":"<div><p>In this article, we study the Zermelo navigation problem with and without obstacles from a theoretical point of view and look towards some computational aspects. More intuitively, this navigation model is in fact an optimal control problem with continuous inequality constraints. We first aim to study the structure of these optimal trajectories using the geometric aspects of the problem. More precisely, we find the time-optimal trajectories and characterize them as geodesics of Randers metrics away from the danger zone and geodesics of (not necessarily Randers) Finsler metrics where they touch the boundary of the danger zone. We demonstrate some of the important behavior of these trajectories by examples. In particular, we will calculate these trajectories precisely for the critical case of an infinitesimal homothety which, in the language of optimal control problems, will be referred to in this paper as a <em>weak linear vortex</em>.</p><p>Regarding the computational aspects of the resulting optimal control problem with constraints and inspired by the geometry behind this problem, we propose a modification of the optimization scheme previously considered in [Li-Xu-Teo-Chu, Time-optimal Zermelo's navigation problem with moving and fixed obstacles, 2013] by adding a piecewise constant rotation. This modification will entail adding another piecewise constant control to the problem which in turn proves to make the resulting approximated time-optimal paths more precise and efficient as we argue by the example of navigation through a linear vortex.</p></div>","PeriodicalId":51010,"journal":{"name":"Differential Geometry and its Applications","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Differential Geometry and its Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0926224524000706","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
In this article, we study the Zermelo navigation problem with and without obstacles from a theoretical point of view and look towards some computational aspects. More intuitively, this navigation model is in fact an optimal control problem with continuous inequality constraints. We first aim to study the structure of these optimal trajectories using the geometric aspects of the problem. More precisely, we find the time-optimal trajectories and characterize them as geodesics of Randers metrics away from the danger zone and geodesics of (not necessarily Randers) Finsler metrics where they touch the boundary of the danger zone. We demonstrate some of the important behavior of these trajectories by examples. In particular, we will calculate these trajectories precisely for the critical case of an infinitesimal homothety which, in the language of optimal control problems, will be referred to in this paper as a weak linear vortex.
Regarding the computational aspects of the resulting optimal control problem with constraints and inspired by the geometry behind this problem, we propose a modification of the optimization scheme previously considered in [Li-Xu-Teo-Chu, Time-optimal Zermelo's navigation problem with moving and fixed obstacles, 2013] by adding a piecewise constant rotation. This modification will entail adding another piecewise constant control to the problem which in turn proves to make the resulting approximated time-optimal paths more precise and efficient as we argue by the example of navigation through a linear vortex.
在本文中,我们从理论角度研究了有障碍物和无障碍的泽梅洛导航问题,并探讨了一些计算方面的问题。更直观地说,这种导航模型实际上是一个具有连续不等式约束的最优控制问题。我们首先利用问题的几何方面来研究这些最优轨迹的结构。更准确地说,我们找到了时间最优轨迹,并将其描述为远离危险区的兰德斯度量的大地线和接触危险区边界的(不一定是兰德斯)芬斯勒度量的大地线。我们将举例说明这些轨迹的一些重要行为。特别是,我们将精确计算无穷小同调的临界情况下的这些轨迹,用最优控制问题的语言来说,本文将把这种情况称为弱线性漩涡。关于由此产生的有约束条件的最优控制问题的计算方面,受该问题背后的几何学启发,我们提出了对之前在[Li-Xu-Teo-Chu, Time-optimal Zermelo's navigation problem with moving and fixed obstacles, 2013]一文中考虑的优化方案的修改,即增加一个片断恒定旋转。这一修改需要在问题中添加另一个片断常数控制,这反过来又证明了所得到的近似时间最优路径更精确、更高效,我们以穿越线性漩涡的导航为例进行了论证。
期刊介绍:
Differential Geometry and its Applications publishes original research papers and survey papers in differential geometry and in all interdisciplinary areas in mathematics which use differential geometric methods and investigate geometrical structures. The following main areas are covered: differential equations on manifolds, global analysis, Lie groups, local and global differential geometry, the calculus of variations on manifolds, topology of manifolds, and mathematical physics.