关于受约束曲线空间中的大地线

IF 0.6 4区 数学 Q3 MATHEMATICS
Esfandiar Nava-Yazdani
{"title":"关于受约束曲线空间中的大地线","authors":"Esfandiar Nava-Yazdani","doi":"10.1016/j.difgeo.2024.102209","DOIUrl":null,"url":null,"abstract":"<div><div>In this work, we study the geodesics of the space of certain geometrically and physically motivated subspaces of the space of immersed curves endowed with a first order Sobolev metric. This includes elastic curves and also an extension of some results on planar concentric circles to surfaces. The work focuses on intrinsic and constructive approaches.</div></div>","PeriodicalId":51010,"journal":{"name":"Differential Geometry and its Applications","volume":"97 ","pages":"Article 102209"},"PeriodicalIF":0.6000,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On geodesics in the spaces of constrained curves\",\"authors\":\"Esfandiar Nava-Yazdani\",\"doi\":\"10.1016/j.difgeo.2024.102209\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this work, we study the geodesics of the space of certain geometrically and physically motivated subspaces of the space of immersed curves endowed with a first order Sobolev metric. This includes elastic curves and also an extension of some results on planar concentric circles to surfaces. The work focuses on intrinsic and constructive approaches.</div></div>\",\"PeriodicalId\":51010,\"journal\":{\"name\":\"Differential Geometry and its Applications\",\"volume\":\"97 \",\"pages\":\"Article 102209\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-11-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Differential Geometry and its Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0926224524001025\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Differential Geometry and its Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0926224524001025","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在这项工作中,我们研究了沉浸曲线空间的某些几何和物理子空间的大地线,这些子空间被赋予了一阶索波列夫度量。这包括弹性曲线,以及将平面同心圆的一些结果扩展到曲面。工作重点是内在和构造方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On geodesics in the spaces of constrained curves
In this work, we study the geodesics of the space of certain geometrically and physically motivated subspaces of the space of immersed curves endowed with a first order Sobolev metric. This includes elastic curves and also an extension of some results on planar concentric circles to surfaces. The work focuses on intrinsic and constructive approaches.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.00
自引率
20.00%
发文量
81
审稿时长
6-12 weeks
期刊介绍: Differential Geometry and its Applications publishes original research papers and survey papers in differential geometry and in all interdisciplinary areas in mathematics which use differential geometric methods and investigate geometrical structures. The following main areas are covered: differential equations on manifolds, global analysis, Lie groups, local and global differential geometry, the calculus of variations on manifolds, topology of manifolds, and mathematical physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信