{"title":"与二阶零芒形的一维扩展相关的非瓦伊斯曼LCK求解芒形","authors":"Hiroshi Sawai","doi":"10.1016/j.difgeo.2024.102174","DOIUrl":null,"url":null,"abstract":"<div><p>The purpose of this paper is to determine a locally conformal Kähler solvmanifold such that its associated solvable Lie group is a one-dimensional extension of a 2-step nilpotent Lie group.</p></div>","PeriodicalId":51010,"journal":{"name":"Differential Geometry and its Applications","volume":"96 ","pages":"Article 102174"},"PeriodicalIF":0.6000,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A non-Vaisman LCK solvmanifold associated to a one-dimensional extension of a 2-step nilmanifold\",\"authors\":\"Hiroshi Sawai\",\"doi\":\"10.1016/j.difgeo.2024.102174\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The purpose of this paper is to determine a locally conformal Kähler solvmanifold such that its associated solvable Lie group is a one-dimensional extension of a 2-step nilpotent Lie group.</p></div>\",\"PeriodicalId\":51010,\"journal\":{\"name\":\"Differential Geometry and its Applications\",\"volume\":\"96 \",\"pages\":\"Article 102174\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Differential Geometry and its Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0926224524000676\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Differential Geometry and its Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0926224524000676","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
A non-Vaisman LCK solvmanifold associated to a one-dimensional extension of a 2-step nilmanifold
The purpose of this paper is to determine a locally conformal Kähler solvmanifold such that its associated solvable Lie group is a one-dimensional extension of a 2-step nilpotent Lie group.
期刊介绍:
Differential Geometry and its Applications publishes original research papers and survey papers in differential geometry and in all interdisciplinary areas in mathematics which use differential geometric methods and investigate geometrical structures. The following main areas are covered: differential equations on manifolds, global analysis, Lie groups, local and global differential geometry, the calculus of variations on manifolds, topology of manifolds, and mathematical physics.