Differential Geometry and its Applications最新文献

筛选
英文 中文
Morse-Novikov cohomology on foliated manifolds 叶状流形上的莫尔斯-诺维科夫同调
IF 0.5 4区 数学
Differential Geometry and its Applications Pub Date : 2023-12-22 DOI: 10.1016/j.difgeo.2023.102100
Md. Shariful Islam
{"title":"Morse-Novikov cohomology on foliated manifolds","authors":"Md. Shariful Islam","doi":"10.1016/j.difgeo.2023.102100","DOIUrl":"https://doi.org/10.1016/j.difgeo.2023.102100","url":null,"abstract":"<div><p><span>The idea of Lichnerowicz or Morse-Novikov cohomology groups of a manifold has been utilized by many researchers to study important properties and invariants of a manifold. Morse-Novikov cohomology is defined using the differential </span><span><math><msub><mrow><mi>d</mi></mrow><mrow><mi>ω</mi></mrow></msub><mo>=</mo><mi>d</mi><mo>+</mo><mi>ω</mi><mo>∧</mo></math></span>, where <em>ω</em><span><span> is a closed 1-form. We study Morse-Novikov cohomology relative to a foliation on a manifold and its homotopy invariance<span> and then extend it to more general type of forms on a Riemannian foliation. We study the Laplacian and Hodge decompositions for the corresponding </span></span>differential operators<span> on reduced leafwise Morse-Novikov complexes. In the case of Riemannian foliations, we prove that the reduced leafwise Morse-Novikov cohomology groups satisfy the Hodge theorem and Poincaré duality. The resulting isomorphisms yield a Hodge diamond structure for leafwise Morse-Novikov cohomology.</span></span></p></div>","PeriodicalId":51010,"journal":{"name":"Differential Geometry and its Applications","volume":"93 ","pages":"Article 102100"},"PeriodicalIF":0.5,"publicationDate":"2023-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138839754","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The energy density of biharmonic quadratic maps between spheres 球间双谐波二次映射的能量密度
IF 0.5 4区 数学
Differential Geometry and its Applications Pub Date : 2023-12-21 DOI: 10.1016/j.difgeo.2023.102096
Rareş Ambrosie, Cezar Oniciuc
{"title":"The energy density of biharmonic quadratic maps between spheres","authors":"Rareş Ambrosie,&nbsp;Cezar Oniciuc","doi":"10.1016/j.difgeo.2023.102096","DOIUrl":"https://doi.org/10.1016/j.difgeo.2023.102096","url":null,"abstract":"<div><p><span>In this paper, we first prove that a quadratic form from </span><span><math><msup><mrow><mrow><mi>S</mi></mrow></mrow><mrow><mi>m</mi></mrow></msup></math></span> to <span><math><msup><mrow><mrow><mi>S</mi></mrow></mrow><mrow><mi>n</mi></mrow></msup></math></span> is non-harmonic biharmonic if and only if it has constant energy density <span><math><mo>(</mo><mi>m</mi><mo>+</mo><mn>1</mn><mo>)</mo><mo>/</mo><mn>2</mn></math></span>. Then, we give a positive answer to an open problem raised in <span>[1]</span> concerning the structure of non-harmonic biharmonic quadratic forms. As a direct application, using classification results for harmonic quadratic forms, we infer classification results for non-harmonic biharmonic quadratic forms.</p></div>","PeriodicalId":51010,"journal":{"name":"Differential Geometry and its Applications","volume":"93 ","pages":"Article 102096"},"PeriodicalIF":0.5,"publicationDate":"2023-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138839752","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bifurcations of robust features on surfaces in the Minkowski 3-space 闵科夫斯基三维空间曲面上稳健特征的分岔
IF 0.5 4区 数学
Differential Geometry and its Applications Pub Date : 2023-12-21 DOI: 10.1016/j.difgeo.2023.102097
Marco Antônio do Couto Fernandes
{"title":"Bifurcations of robust features on surfaces in the Minkowski 3-space","authors":"Marco Antônio do Couto Fernandes","doi":"10.1016/j.difgeo.2023.102097","DOIUrl":"https://doi.org/10.1016/j.difgeo.2023.102097","url":null,"abstract":"<div><p><span>We obtain the bifurcation of some special curves on generic 1-parameter families of surfaces in the Minkowski 3-space. The curves treated here are the locus of points where the induced pseudo metric is degenerate, the discriminant of the lines </span>principal curvature<span>, the parabolic curve and the locus of points where the mean curvature vanishes.</span></p></div>","PeriodicalId":51010,"journal":{"name":"Differential Geometry and its Applications","volume":"93 ","pages":"Article 102097"},"PeriodicalIF":0.5,"publicationDate":"2023-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138839753","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Vortex-type equations on compact Riemann surfaces 紧凑黎曼曲面上的涡旋型方程
IF 0.5 4区 数学
Differential Geometry and its Applications Pub Date : 2023-12-19 DOI: 10.1016/j.difgeo.2023.102098
Kartick Ghosh
{"title":"Vortex-type equations on compact Riemann surfaces","authors":"Kartick Ghosh","doi":"10.1016/j.difgeo.2023.102098","DOIUrl":"https://doi.org/10.1016/j.difgeo.2023.102098","url":null,"abstract":"<div><p>In this paper, we prove <em>a priori</em><span><span> estimates for some vortex-type equations on compact Riemann surfaces. As applications, we recover existing estimates for the vortex bundle Monge-Ampère equation, prove an </span>existence and uniqueness theorem for the Calabi-Yang-Mills equations on vortex bundles and get estimates for </span><em>J</em><span>-vortex equation. We prove an existence and uniqueness result relating Gieseker stability and the existence of almost Hermitian Einstein metrics, i.e., a Kobayashi-Hitchin type correspondence. We also prove Kählerness of the negative of the symplectic form which arises in the moment map interpretation of the Calabi-Yang-Mills equations in </span><span>[9]</span>.</p></div>","PeriodicalId":51010,"journal":{"name":"Differential Geometry and its Applications","volume":"93 ","pages":"Article 102098"},"PeriodicalIF":0.5,"publicationDate":"2023-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138770022","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Existence and uniqueness results for a singular Kirchhoff type equation on a closed manifold 封闭流形上奇异基尔霍夫型方程的存在性和唯一性结果
IF 0.5 4区 数学
Differential Geometry and its Applications Pub Date : 2023-12-15 DOI: 10.1016/j.difgeo.2023.102094
Mohamed El Farouk Ounane , Kamel Tahri
{"title":"Existence and uniqueness results for a singular Kirchhoff type equation on a closed manifold","authors":"Mohamed El Farouk Ounane ,&nbsp;Kamel Tahri","doi":"10.1016/j.difgeo.2023.102094","DOIUrl":"10.1016/j.difgeo.2023.102094","url":null,"abstract":"<div><p><span><span><span>Using the variational methods and the </span>critical points theory, we prove the existence and the uniqueness of a positive solution for a singular </span>Kirchhoff<span> type equation on a closed Riemannian manifold of dimension </span></span><span><math><mi>N</mi><mo>≥</mo><mn>3</mn></math></span>. At the end, we give a geometric application involving the conformal Laplacian.</p></div>","PeriodicalId":51010,"journal":{"name":"Differential Geometry and its Applications","volume":"93 ","pages":"Article 102094"},"PeriodicalIF":0.5,"publicationDate":"2023-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138683735","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sphere bundle over the set of inner products in a Hilbert space 希尔伯特空间内积集合上的球体束
IF 0.5 4区 数学
Differential Geometry and its Applications Pub Date : 2023-12-14 DOI: 10.1016/j.difgeo.2023.102092
E. Andruchow , M.E. Di Iorio y Lucero
{"title":"Sphere bundle over the set of inner products in a Hilbert space","authors":"E. Andruchow ,&nbsp;M.E. Di Iorio y Lucero","doi":"10.1016/j.difgeo.2023.102092","DOIUrl":"10.1016/j.difgeo.2023.102092","url":null,"abstract":"<div><p>Let <span><math><mo>(</mo><mi>H</mi><mo>,</mo><mo>〈</mo><mspace></mspace><mo>,</mo><mspace></mspace><mo>〉</mo><mo>)</mo></math></span><span> be a complex Hilbert space and </span><span><math><mi>B</mi><mo>(</mo><mi>H</mi><mo>)</mo></math></span><span> the space of bounded linear operators in </span><span><math><mi>H</mi></math></span>. Any other equivalent inner product in <span><math><mi>H</mi></math></span> is of the form <span><math><msub><mrow><mo>〈</mo><mi>f</mi><mo>,</mo><mi>g</mi><mo>〉</mo></mrow><mrow><mi>A</mi></mrow></msub><mo>=</mo><mo>〈</mo><mi>A</mi><mi>f</mi><mo>,</mo><mi>g</mi><mo>〉</mo></math></span> (<span><math><mi>f</mi><mo>,</mo><mi>g</mi><mo>∈</mo><mi>H</mi></math></span>) for some positive invertible operator <span><math><mi>A</mi><mo>∈</mo><mi>B</mi><mo>(</mo><mi>H</mi><mo>)</mo></math></span>. In this paper we study the bundle <span><math><mi>M</mi></math></span> which consist of the unit sphere <span><math><mo>{</mo><mi>f</mi><mo>∈</mo><mi>H</mi><mo>:</mo><msub><mrow><mo>〈</mo><mi>f</mi><mo>,</mo><mi>f</mi><mo>〉</mo></mrow><mrow><mi>A</mi></mrow></msub><mo>=</mo><mn>1</mn><mo>}</mo></math></span> over each (equivalent) inner product <span><math><msub><mrow><mo>〈</mo><mspace></mspace><mo>,</mo><mspace></mspace><mo>〉</mo></mrow><mrow><mi>A</mi></mrow></msub></math></span>, which due to the observation above can be defined<span><span><span><math><mi>M</mi><mo>=</mo><mo>{</mo><mo>(</mo><mi>A</mi><mo>,</mo><mi>f</mi><mo>)</mo><mo>∈</mo><mi>B</mi><mo>(</mo><mi>H</mi><mo>)</mo><mo>×</mo><mi>H</mi><mo>:</mo><mi>A</mi><mtext> is positive and invertible and </mtext><mo>〈</mo><mi>A</mi><mi>f</mi><mo>,</mo><mi>f</mi><mo>〉</mo><mo>=</mo><mn>1</mn><mo>}</mo><mo>.</mo></math></span></span></span> We prove that <span><math><mi>M</mi></math></span><span><span> is a complemented submanifold of the </span>Banach space </span><span><math><mi>B</mi><mo>(</mo><mi>H</mi><mo>)</mo><mo>×</mo><mi>H</mi></math></span><span> and a homogeneous space of the Banach-Lie group </span><span><math><mi>G</mi><mo>(</mo><mi>H</mi><mo>)</mo><mo>⊂</mo><mi>B</mi><mo>(</mo><mi>H</mi><mo>)</mo></math></span> of invertible operators. We introduce a reductive structure in <span><math><mi>M</mi></math></span><span>, and study properties of the geodesics of the linear connection induced by this reductive structure. We consider certain submanifolds of </span><span><math><mi>M</mi></math></span>, for instance, the one obtained when the positive elements <em>A</em> describing the inner products lie in a prescribed C<sup>⁎</sup>-algebra <span><math><mi>A</mi><mo>⊂</mo><mi>B</mi><mo>(</mo><mi>H</mi><mo>)</mo></math></span>.</p></div>","PeriodicalId":51010,"journal":{"name":"Differential Geometry and its Applications","volume":"93 ","pages":"Article 102092"},"PeriodicalIF":0.5,"publicationDate":"2023-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138684010","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
First eigenvalues of free boundary hypersurfaces in the unit ball along the inverse mean curvature flow 单位球中自由边界超曲面沿反向平均曲率流的第一特征值
IF 0.5 4区 数学
Differential Geometry and its Applications Pub Date : 2023-12-13 DOI: 10.1016/j.difgeo.2023.102095
Pak Tung Ho , Juncheol Pyo
{"title":"First eigenvalues of free boundary hypersurfaces in the unit ball along the inverse mean curvature flow","authors":"Pak Tung Ho ,&nbsp;Juncheol Pyo","doi":"10.1016/j.difgeo.2023.102095","DOIUrl":"https://doi.org/10.1016/j.difgeo.2023.102095","url":null,"abstract":"<div><p><span>In this note, we consider the first nonzero eigenvalue </span><span><math><msub><mrow><mi>λ</mi></mrow><mrow><mi>p</mi><mo>,</mo><mn>1</mn></mrow></msub></math></span> of the <em>p</em><span><span>-Laplacian on free boundary proper hypersurfaces in the unit ball evolving along the inverse </span>mean curvature flow. We show that </span><span><math><msub><mrow><mi>λ</mi></mrow><mrow><mi>p</mi><mo>,</mo><mn>1</mn></mrow></msub></math></span> is monotone decreasing along the flow. Using the convergence of free boundary disks in the unit ball, we give a lower bound of <span><math><msub><mrow><mi>λ</mi></mrow><mrow><mi>p</mi><mo>,</mo><mn>1</mn></mrow></msub></math></span> of a free boundary disk type hypersurface in the unit ball.</p></div>","PeriodicalId":51010,"journal":{"name":"Differential Geometry and its Applications","volume":"93 ","pages":"Article 102095"},"PeriodicalIF":0.5,"publicationDate":"2023-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138582036","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On conformal transformations preserving the Ricci tensor in Finsler geometry 论芬斯勒几何中保留里奇张量的保角变换
IF 0.5 4区 数学
Differential Geometry and its Applications Pub Date : 2023-12-11 DOI: 10.1016/j.difgeo.2023.102090
M.H. Shavakh , B. Bidabad
{"title":"On conformal transformations preserving the Ricci tensor in Finsler geometry","authors":"M.H. Shavakh ,&nbsp;B. Bidabad","doi":"10.1016/j.difgeo.2023.102090","DOIUrl":"https://doi.org/10.1016/j.difgeo.2023.102090","url":null,"abstract":"<div><p><span><span>Here we obtain a classical integral formula on the conformal change of Finsler metrics. As an application, we obtain significant results depending on the sign of the Ricci scalars, for mean Landsberg surfaces and show there is no conformal transformation between two compact mean Landsberg surfaces, one of a non-positive Ricci scalar and another of a non-negative Ricci scalar, except for the case where both Ricci scalars are identically zero. Conformal transformations preserving the </span>Ricci tensor are known as Liouville transformations. Here we show that a Liouville transformation between two compact mean Landsberg manifolds of isotropic </span><em>S</em>-curvature is homothetic. Moreover, every Liouville transformation between two compact Finsler <em>n</em><span>-manifolds of bounded mean value Cartan tensor is homothetic. These results are an extension of the results of M. Obata and S. T. Yau on Riemannian geometry<span> and give a positive answer to a conjecture on Liouville's theorem.</span></span></p></div>","PeriodicalId":51010,"journal":{"name":"Differential Geometry and its Applications","volume":"92 ","pages":"Article 102090"},"PeriodicalIF":0.5,"publicationDate":"2023-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138577471","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Principal bundles with holomorphic connections over a Kähler Calabi-Yau manifold 卡勒卡拉比尤流形上具有全态连接的主束
IF 0.5 4区 数学
Differential Geometry and its Applications Pub Date : 2023-12-08 DOI: 10.1016/j.difgeo.2023.102093
Indranil Biswas , Sorin Dumitrescu
{"title":"Principal bundles with holomorphic connections over a Kähler Calabi-Yau manifold","authors":"Indranil Biswas ,&nbsp;Sorin Dumitrescu","doi":"10.1016/j.difgeo.2023.102093","DOIUrl":"https://doi.org/10.1016/j.difgeo.2023.102093","url":null,"abstract":"<div><p><span>We prove that any holomorphic vector bundle admitting a holomorphic connection, over a compact Kähler Calabi-Yau manifold, also admits a flat holomorphic connection. This addresses a particular case of a question asked by Atiyah and generalizes a result previously obtained in </span><span>[6]</span> for simply connected compact Kähler Calabi-Yau manifolds. We give some applications of it in the framework of Cartan geometries and foliated Cartan geometries on Kähler Calabi-Yau manifolds.</p></div>","PeriodicalId":51010,"journal":{"name":"Differential Geometry and its Applications","volume":"92 ","pages":"Article 102093"},"PeriodicalIF":0.5,"publicationDate":"2023-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138557706","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Chekanov torus and Gelfand–Zeitlin torus in S2 × S2 S2中的Chekanov环和Gelfand-Zeitlin环 × S2
IF 0.5 4区 数学
Differential Geometry and its Applications Pub Date : 2023-12-07 DOI: 10.1016/j.difgeo.2023.102091
Yoosik Kim
{"title":"Chekanov torus and Gelfand–Zeitlin torus in S2 × S2","authors":"Yoosik Kim","doi":"10.1016/j.difgeo.2023.102091","DOIUrl":"https://doi.org/10.1016/j.difgeo.2023.102091","url":null,"abstract":"<div><p>The Chekanov torus is the first known <em>exotic</em><span><span> torus, a monotone Lagrangian torus that is not </span>Hamiltonian<span> isotopic to the standard monotone Lagrangian torus. We explore the relationship between the Chekanov torus in </span></span><span><math><msup><mrow><mi>S</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>×</mo><msup><mrow><mi>S</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> and a monotone Lagrangian torus that had been constructed before Chekanov's construction <span>[6]</span>. We prove that the monotone Lagrangian torus fiber in a certain Gelfand–Zeitlin system is related to the Chekanov torus in <span><math><msup><mrow><mi>S</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>×</mo><msup><mrow><mi>S</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> by a symplectomorphism.</p></div>","PeriodicalId":51010,"journal":{"name":"Differential Geometry and its Applications","volume":"93 ","pages":"Article 102091"},"PeriodicalIF":0.5,"publicationDate":"2023-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138501413","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信