Schwarz lemma for conformal parametrization of minimal graphs in M×R

IF 0.6 4区 数学 Q3 MATHEMATICS
David Kalaj
{"title":"Schwarz lemma for conformal parametrization of minimal graphs in M×R","authors":"David Kalaj","doi":"10.1016/j.difgeo.2024.102169","DOIUrl":null,"url":null,"abstract":"<div><p>We prove Schwarz-type lemma results for Weierstrass parameterization of the minimal disk in the Riemannian manifold <span><math><mi>M</mi><mo>×</mo><mi>R</mi></math></span>, where <em>M</em> is a Riemannian surface of non-positive Gaussian curvature. The estimate is sharp, and the equality is attained if and only if the <em>ϱ</em>-harmonic mapping that produces the parameterization is conformal and the metric is a Euclidean metric. If the area of the minimal surface is equal to the area of the disk, then the parametrization is a contraction w.r.t. induced metric and hyperbolic metric respectively.</p></div>","PeriodicalId":51010,"journal":{"name":"Differential Geometry and its Applications","volume":"96 ","pages":"Article 102169"},"PeriodicalIF":0.6000,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Differential Geometry and its Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0926224524000627","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We prove Schwarz-type lemma results for Weierstrass parameterization of the minimal disk in the Riemannian manifold M×R, where M is a Riemannian surface of non-positive Gaussian curvature. The estimate is sharp, and the equality is attained if and only if the ϱ-harmonic mapping that produces the parameterization is conformal and the metric is a Euclidean metric. If the area of the minimal surface is equal to the area of the disk, then the parametrization is a contraction w.r.t. induced metric and hyperbolic metric respectively.

M×R 中最小图共形参数化的 Schwarz Lemma
我们证明了黎曼流形 M×R 中最小圆盘的魏尔斯特拉斯参数化的施瓦茨型两难结果,其中 M 是非正高斯曲率的黎曼曲面。该估计是尖锐的,并且只有当且仅当产生参数化的ϱ-谐波映射是保角的,且度量是欧几里得度量时,才能达到相等。如果最小曲面的面积等于圆盘的面积,那么参数化分别是对诱导度量和双曲度量的收缩。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.00
自引率
20.00%
发文量
81
审稿时长
6-12 weeks
期刊介绍: Differential Geometry and its Applications publishes original research papers and survey papers in differential geometry and in all interdisciplinary areas in mathematics which use differential geometric methods and investigate geometrical structures. The following main areas are covered: differential equations on manifolds, global analysis, Lie groups, local and global differential geometry, the calculus of variations on manifolds, topology of manifolds, and mathematical physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信