Sasakian geometry on sphere bundles II: Constant scalar curvature

IF 0.6 4区 数学 Q3 MATHEMATICS
Charles P. Boyer , Christina W. Tønnesen-Friedman
{"title":"Sasakian geometry on sphere bundles II: Constant scalar curvature","authors":"Charles P. Boyer ,&nbsp;Christina W. Tønnesen-Friedman","doi":"10.1016/j.difgeo.2024.102166","DOIUrl":null,"url":null,"abstract":"<div><p>In a previous paper <span>[18]</span> the authors employed the fiber join construction of Yamazaki <span>[38]</span> together with the admissible construction of Apostolov, Calderbank, Gauduchon, and Tønnesen-Friedman <span>[2]</span> to construct new extremal Sasaki metrics on odd dimensional sphere bundles over smooth projective algebraic varieties. In the present paper we continue this study by applying a recent existence theorem <span>[14]</span> that shows that under certain conditions one can always obtain a constant scalar curvature Sasaki metric in the Sasaki cone. Moreover, we explicitly describe this construction for certain sphere bundles of dimension 5 and 7.</p></div>","PeriodicalId":51010,"journal":{"name":"Differential Geometry and its Applications","volume":"96 ","pages":"Article 102166"},"PeriodicalIF":0.6000,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Differential Geometry and its Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0926224524000597","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In a previous paper [18] the authors employed the fiber join construction of Yamazaki [38] together with the admissible construction of Apostolov, Calderbank, Gauduchon, and Tønnesen-Friedman [2] to construct new extremal Sasaki metrics on odd dimensional sphere bundles over smooth projective algebraic varieties. In the present paper we continue this study by applying a recent existence theorem [14] that shows that under certain conditions one can always obtain a constant scalar curvature Sasaki metric in the Sasaki cone. Moreover, we explicitly describe this construction for certain sphere bundles of dimension 5 and 7.

球面束上的萨萨基几何 II:恒定标量曲率
在之前的论文[18]中,作者利用山崎(Yamazaki)[38]的纤维连接构造以及阿波斯托洛夫(Apostolov)、卡尔德班克(Calderbank)、高杜松(Gauduchon)和托内森-弗里德曼(Tønnesen-Friedman)[2]的可容许构造,在光滑投影代数品种上的奇维球面束上构造了新的极值佐佐木度量。在本文中,我们将继续这项研究,应用最新的存在性定理[14],该定理表明,在某些条件下,我们总能在佐佐木锥中获得恒定标量曲率的佐佐木度量。此外,我们还明确描述了维数为 5 和 7 的某些球束的构造。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.00
自引率
20.00%
发文量
81
审稿时长
6-12 weeks
期刊介绍: Differential Geometry and its Applications publishes original research papers and survey papers in differential geometry and in all interdisciplinary areas in mathematics which use differential geometric methods and investigate geometrical structures. The following main areas are covered: differential equations on manifolds, global analysis, Lie groups, local and global differential geometry, the calculus of variations on manifolds, topology of manifolds, and mathematical physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信