{"title":"与罗宾边界条件的zeta决定因子胶合公式相关的曲率张量","authors":"Klaus Kirsten , Yoonweon Lee","doi":"10.1016/j.difgeo.2024.102165","DOIUrl":null,"url":null,"abstract":"<div><p>The gluing formula for the zeta-determinants of Laplacians with respect to the Robin boundary condition was proved in <span>[15]</span>. This formula contains a constant which is expressed by some curvature tensors on the cutting hypersurface including the scalar and principal curvatures. In this paper we compute this constant explicitly when the cutting hypersurface is a 2-dimensional closed submanifold in a closed Riemannian manifold, and discuss some related topics. We next use the conformal rescaling of the Riemannian metric to compute the value of the zeta function at zero associated to the generalized Dirichlet-to-Neumann operator defined by the Robin boundary condition on this cutting hypersurface.</p></div>","PeriodicalId":51010,"journal":{"name":"Differential Geometry and its Applications","volume":"96 ","pages":"Article 102165"},"PeriodicalIF":0.6000,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The curvature tensors associated with the gluing formula of the zeta-determinants for the Robin boundary condition\",\"authors\":\"Klaus Kirsten , Yoonweon Lee\",\"doi\":\"10.1016/j.difgeo.2024.102165\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The gluing formula for the zeta-determinants of Laplacians with respect to the Robin boundary condition was proved in <span>[15]</span>. This formula contains a constant which is expressed by some curvature tensors on the cutting hypersurface including the scalar and principal curvatures. In this paper we compute this constant explicitly when the cutting hypersurface is a 2-dimensional closed submanifold in a closed Riemannian manifold, and discuss some related topics. We next use the conformal rescaling of the Riemannian metric to compute the value of the zeta function at zero associated to the generalized Dirichlet-to-Neumann operator defined by the Robin boundary condition on this cutting hypersurface.</p></div>\",\"PeriodicalId\":51010,\"journal\":{\"name\":\"Differential Geometry and its Applications\",\"volume\":\"96 \",\"pages\":\"Article 102165\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Differential Geometry and its Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0926224524000585\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Differential Geometry and its Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0926224524000585","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
The curvature tensors associated with the gluing formula of the zeta-determinants for the Robin boundary condition
The gluing formula for the zeta-determinants of Laplacians with respect to the Robin boundary condition was proved in [15]. This formula contains a constant which is expressed by some curvature tensors on the cutting hypersurface including the scalar and principal curvatures. In this paper we compute this constant explicitly when the cutting hypersurface is a 2-dimensional closed submanifold in a closed Riemannian manifold, and discuss some related topics. We next use the conformal rescaling of the Riemannian metric to compute the value of the zeta function at zero associated to the generalized Dirichlet-to-Neumann operator defined by the Robin boundary condition on this cutting hypersurface.
期刊介绍:
Differential Geometry and its Applications publishes original research papers and survey papers in differential geometry and in all interdisciplinary areas in mathematics which use differential geometric methods and investigate geometrical structures. The following main areas are covered: differential equations on manifolds, global analysis, Lie groups, local and global differential geometry, the calculus of variations on manifolds, topology of manifolds, and mathematical physics.