Hua operators on homogeneous line bundles over non-tube type bounded symmetric domains

IF 0.6 4区 数学 Q3 MATHEMATICS
Fouzia El Wassouli, Daoud Oukacha
{"title":"Hua operators on homogeneous line bundles over non-tube type bounded symmetric domains","authors":"Fouzia El Wassouli,&nbsp;Daoud Oukacha","doi":"10.1016/j.difgeo.2024.102168","DOIUrl":null,"url":null,"abstract":"<div><p>Let <span><math><mi>Ω</mi><mo>=</mo><mi>G</mi><mo>/</mo><mi>K</mi></math></span> be a bounded symmetric domain of non-compact type. In this paper the image of the Poisson transform on the degenerate principal series representations of <em>G</em> attached to the Shilov boundary of Ω is considered. We characterize the images in terms of the third-order Hua operators <span><math><msub><mrow><mi>U</mi></mrow><mrow><mi>ν</mi></mrow></msub></math></span> and <span><math><msub><mrow><mi>W</mi></mrow><mrow><mi>ν</mi></mrow></msub></math></span>. When Ω is the exceptional domain of type <em>V</em>, we give the explicit formulas for the operators <span><math><msub><mrow><mi>U</mi></mrow><mrow><mi>ν</mi></mrow></msub></math></span> and <span><math><msub><mrow><mi>W</mi></mrow><mrow><mi>ν</mi></mrow></msub></math></span>.</p></div>","PeriodicalId":51010,"journal":{"name":"Differential Geometry and its Applications","volume":"96 ","pages":"Article 102168"},"PeriodicalIF":0.6000,"publicationDate":"2024-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Differential Geometry and its Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0926224524000615","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let Ω=G/K be a bounded symmetric domain of non-compact type. In this paper the image of the Poisson transform on the degenerate principal series representations of G attached to the Shilov boundary of Ω is considered. We characterize the images in terms of the third-order Hua operators Uν and Wν. When Ω is the exceptional domain of type V, we give the explicit formulas for the operators Uν and Wν.

非管型有界对称域上同质线束上的华算子
设 Ω=G/K 为非紧凑型有界对称域。本文考虑了泊松变换在附于 Ω 的希洛夫边界的 G 的退化主列表示上的图像。我们用三阶华算子 Uν 和 Wν 来描述图像的特征。当 Ω 是类型 V 的例外域时,我们给出了算子 Uν 和 Wν 的显式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.00
自引率
20.00%
发文量
81
审稿时长
6-12 weeks
期刊介绍: Differential Geometry and its Applications publishes original research papers and survey papers in differential geometry and in all interdisciplinary areas in mathematics which use differential geometric methods and investigate geometrical structures. The following main areas are covered: differential equations on manifolds, global analysis, Lie groups, local and global differential geometry, the calculus of variations on manifolds, topology of manifolds, and mathematical physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信