{"title":"M×R 中最小图共形参数化的 Schwarz Lemma","authors":"David Kalaj","doi":"10.1016/j.difgeo.2024.102169","DOIUrl":null,"url":null,"abstract":"<div><p>We prove Schwarz-type lemma results for Weierstrass parameterization of the minimal disk in the Riemannian manifold <span><math><mi>M</mi><mo>×</mo><mi>R</mi></math></span>, where <em>M</em> is a Riemannian surface of non-positive Gaussian curvature. The estimate is sharp, and the equality is attained if and only if the <em>ϱ</em>-harmonic mapping that produces the parameterization is conformal and the metric is a Euclidean metric. If the area of the minimal surface is equal to the area of the disk, then the parametrization is a contraction w.r.t. induced metric and hyperbolic metric respectively.</p></div>","PeriodicalId":51010,"journal":{"name":"Differential Geometry and its Applications","volume":"96 ","pages":"Article 102169"},"PeriodicalIF":0.6000,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Schwarz lemma for conformal parametrization of minimal graphs in M×R\",\"authors\":\"David Kalaj\",\"doi\":\"10.1016/j.difgeo.2024.102169\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We prove Schwarz-type lemma results for Weierstrass parameterization of the minimal disk in the Riemannian manifold <span><math><mi>M</mi><mo>×</mo><mi>R</mi></math></span>, where <em>M</em> is a Riemannian surface of non-positive Gaussian curvature. The estimate is sharp, and the equality is attained if and only if the <em>ϱ</em>-harmonic mapping that produces the parameterization is conformal and the metric is a Euclidean metric. If the area of the minimal surface is equal to the area of the disk, then the parametrization is a contraction w.r.t. induced metric and hyperbolic metric respectively.</p></div>\",\"PeriodicalId\":51010,\"journal\":{\"name\":\"Differential Geometry and its Applications\",\"volume\":\"96 \",\"pages\":\"Article 102169\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Differential Geometry and its Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0926224524000627\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Differential Geometry and its Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0926224524000627","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
我们证明了黎曼流形 M×R 中最小圆盘的魏尔斯特拉斯参数化的施瓦茨型两难结果,其中 M 是非正高斯曲率的黎曼曲面。该估计是尖锐的,并且只有当且仅当产生参数化的ϱ-谐波映射是保角的,且度量是欧几里得度量时,才能达到相等。如果最小曲面的面积等于圆盘的面积,那么参数化分别是对诱导度量和双曲度量的收缩。
Schwarz lemma for conformal parametrization of minimal graphs in M×R
We prove Schwarz-type lemma results for Weierstrass parameterization of the minimal disk in the Riemannian manifold , where M is a Riemannian surface of non-positive Gaussian curvature. The estimate is sharp, and the equality is attained if and only if the ϱ-harmonic mapping that produces the parameterization is conformal and the metric is a Euclidean metric. If the area of the minimal surface is equal to the area of the disk, then the parametrization is a contraction w.r.t. induced metric and hyperbolic metric respectively.
期刊介绍:
Differential Geometry and its Applications publishes original research papers and survey papers in differential geometry and in all interdisciplinary areas in mathematics which use differential geometric methods and investigate geometrical structures. The following main areas are covered: differential equations on manifolds, global analysis, Lie groups, local and global differential geometry, the calculus of variations on manifolds, topology of manifolds, and mathematical physics.