Lie 双桥体的多迪拉克结构

IF 0.6 4区 数学 Q3 MATHEMATICS
{"title":"Lie 双桥体的多迪拉克结构","authors":"","doi":"10.1016/j.difgeo.2024.102178","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we introduce multi-Dirac structures for Lie bialgebroids, which generalize the multi-Dirac structures on manifolds and Dirac structures on Lie bialgebroids. Next, we also introduce higher-order Courant algebroids for Lie algebroids and higher-order Dorfman algebroids for Lie algebroids and study the relationship between them. Furthermore, we show that there is a one-to-one correspondence between the multi-Dirac structures for special Lie bialgebroids and the higher Dirac structures for Lie algebroids. Finally, we construct the Gerstenhaber algebra by using the multi-Dirac structure for Lie bialgebroids.</p></div>","PeriodicalId":51010,"journal":{"name":"Differential Geometry and its Applications","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-Dirac structures for Lie bialgebroids\",\"authors\":\"\",\"doi\":\"10.1016/j.difgeo.2024.102178\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we introduce multi-Dirac structures for Lie bialgebroids, which generalize the multi-Dirac structures on manifolds and Dirac structures on Lie bialgebroids. Next, we also introduce higher-order Courant algebroids for Lie algebroids and higher-order Dorfman algebroids for Lie algebroids and study the relationship between them. Furthermore, we show that there is a one-to-one correspondence between the multi-Dirac structures for special Lie bialgebroids and the higher Dirac structures for Lie algebroids. Finally, we construct the Gerstenhaber algebra by using the multi-Dirac structure for Lie bialgebroids.</p></div>\",\"PeriodicalId\":51010,\"journal\":{\"name\":\"Differential Geometry and its Applications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Differential Geometry and its Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0926224524000718\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Differential Geometry and its Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0926224524000718","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们介绍了 Lie 双曲面的多狄拉克结构,它概括了流形上的多狄拉克结构和 Lie 双曲面上的狄拉克结构。接下来,我们还介绍了 Lie 布尔基的高阶 Courant 布尔基和 Lie 布尔基的高阶 Dorfman 布尔基,并研究了它们之间的关系。此外,我们还证明了特殊列双曲面的多狄拉克结构与列代数的高阶狄拉克结构之间存在一一对应关系。最后,我们利用列双曲面的多狄拉克结构构造了格尔斯滕哈伯代数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multi-Dirac structures for Lie bialgebroids

In this paper, we introduce multi-Dirac structures for Lie bialgebroids, which generalize the multi-Dirac structures on manifolds and Dirac structures on Lie bialgebroids. Next, we also introduce higher-order Courant algebroids for Lie algebroids and higher-order Dorfman algebroids for Lie algebroids and study the relationship between them. Furthermore, we show that there is a one-to-one correspondence between the multi-Dirac structures for special Lie bialgebroids and the higher Dirac structures for Lie algebroids. Finally, we construct the Gerstenhaber algebra by using the multi-Dirac structure for Lie bialgebroids.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.00
自引率
20.00%
发文量
81
审稿时长
6-12 weeks
期刊介绍: Differential Geometry and its Applications publishes original research papers and survey papers in differential geometry and in all interdisciplinary areas in mathematics which use differential geometric methods and investigate geometrical structures. The following main areas are covered: differential equations on manifolds, global analysis, Lie groups, local and global differential geometry, the calculus of variations on manifolds, topology of manifolds, and mathematical physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信