{"title":"Diffeological submanifolds and their friends","authors":"Yael Karshon , David Miyamoto , Jordan Watts","doi":"10.1016/j.difgeo.2024.102170","DOIUrl":null,"url":null,"abstract":"<div><p>A smooth manifold hosts different types of submanifolds, including embedded, weakly-embedded, and immersed submanifolds. The notion of an immersed submanifold requires additional structure (namely, the choice of a topology); when this additional structure is unique, we call the subset a <em>uniquely immersed submanifold</em>. Diffeology provides yet another intrinsic notion of submanifold: a <em>diffeological submanifold</em>.</p><p>We show that from a categorical perspective diffeology rises above the others: viewing manifolds as a concrete category over the category of sets, the <em>initial morphisms</em> are exactly the (diffeological) <em>inductions</em>, which are the diffeomorphisms with diffeological submanifolds. Moreover, if we view manifolds as a concrete category over the category of topological spaces, we recover Joris and Preissmann's notion of <em>pseudo-immersions</em>.</p><p>We show that these notions are all different. In particular, a theorem of Joris from 1982 yields a diffeological submanifold whose inclusion is not an immersion, answering a question that was posed by Iglesias-Zemmour. We also characterize local inductions as those pseudo-immersions that are locally injective.</p><p>In appendices, we review a proof of Joris' theorem, pointing at a flaw in one of the several other proofs that occur in the literature, and we illustrate how submanifolds inherit paracompactness from their ambient manifold.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0926224524000639","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
A smooth manifold hosts different types of submanifolds, including embedded, weakly-embedded, and immersed submanifolds. The notion of an immersed submanifold requires additional structure (namely, the choice of a topology); when this additional structure is unique, we call the subset a uniquely immersed submanifold. Diffeology provides yet another intrinsic notion of submanifold: a diffeological submanifold.
We show that from a categorical perspective diffeology rises above the others: viewing manifolds as a concrete category over the category of sets, the initial morphisms are exactly the (diffeological) inductions, which are the diffeomorphisms with diffeological submanifolds. Moreover, if we view manifolds as a concrete category over the category of topological spaces, we recover Joris and Preissmann's notion of pseudo-immersions.
We show that these notions are all different. In particular, a theorem of Joris from 1982 yields a diffeological submanifold whose inclusion is not an immersion, answering a question that was posed by Iglesias-Zemmour. We also characterize local inductions as those pseudo-immersions that are locally injective.
In appendices, we review a proof of Joris' theorem, pointing at a flaw in one of the several other proofs that occur in the literature, and we illustrate how submanifolds inherit paracompactness from their ambient manifold.