{"title":"The volume of conformally flat manifolds as hypersurfaces in the light-cone","authors":"Riku Kishida","doi":"10.1016/j.difgeo.2024.102173","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we focus on a conformally flat Riemannian manifold <span><math><mo>(</mo><msup><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>,</mo><mi>g</mi><mo>)</mo></math></span> of dimension <em>n</em> isometrically immersed into the <span><math><mo>(</mo><mi>n</mi><mo>+</mo><mn>1</mn><mo>)</mo></math></span>-dimensional light-cone <span><math><msup><mrow><mi>Λ</mi></mrow><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msup></math></span> as a hypersurface. We compute the first and the second variational formulas on the volume of such hypersurfaces. Such a hypersurface <span><math><msup><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> is not only immersed in <span><math><msup><mrow><mi>Λ</mi></mrow><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msup></math></span> but also isometrically realized as a hypersurface of a certain null hypersurface <span><math><msup><mrow><mi>N</mi></mrow><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msup></math></span> in the Minkowski spacetime, which is different from <span><math><msup><mrow><mi>Λ</mi></mrow><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msup></math></span>. Moreover, <span><math><msup><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> has a volume-maximizing property in <span><math><msup><mrow><mi>N</mi></mrow><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msup></math></span>.</p></div>","PeriodicalId":51010,"journal":{"name":"Differential Geometry and its Applications","volume":"96 ","pages":"Article 102173"},"PeriodicalIF":0.6000,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Differential Geometry and its Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0926224524000664","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we focus on a conformally flat Riemannian manifold of dimension n isometrically immersed into the -dimensional light-cone as a hypersurface. We compute the first and the second variational formulas on the volume of such hypersurfaces. Such a hypersurface is not only immersed in but also isometrically realized as a hypersurface of a certain null hypersurface in the Minkowski spacetime, which is different from . Moreover, has a volume-maximizing property in .
期刊介绍:
Differential Geometry and its Applications publishes original research papers and survey papers in differential geometry and in all interdisciplinary areas in mathematics which use differential geometric methods and investigate geometrical structures. The following main areas are covered: differential equations on manifolds, global analysis, Lie groups, local and global differential geometry, the calculus of variations on manifolds, topology of manifolds, and mathematical physics.