Algebras and Representation Theory最新文献

筛选
英文 中文
Two (mathbb {Z})-Graded Infinite Lie Conformal Algebras Related to the Virasoro Conformal Algebra 与维拉索罗共形代数有关的两个 $mathbb {Z}$ -Graded 无限列共形代数
IF 0.5 4区 数学
Algebras and Representation Theory Pub Date : 2024-02-24 DOI: 10.1007/s10468-024-10260-2
Xiaoqing Yue, Shun Zou
{"title":"Two (mathbb {Z})-Graded Infinite Lie Conformal Algebras Related to the Virasoro Conformal Algebra","authors":"Xiaoqing Yue,&nbsp;Shun Zou","doi":"10.1007/s10468-024-10260-2","DOIUrl":"10.1007/s10468-024-10260-2","url":null,"abstract":"<div><p>In this paper, we study two <span>(mathbb {Z})</span>-graded infinite Lie conformal algebras, which are closely related to a class of Lie algebras of the generalized Block type, and which both have a quotient algebra isomorphic to the Virasoro conformal algebra. We concretely determine their isomorphic mappings, conformal derivations, extensions by a one-dimensional center under some conditions, finite conformal modules and <span>(mathbb {Z})</span>-graded free intermediate series modules.</p></div>","PeriodicalId":50825,"journal":{"name":"Algebras and Representation Theory","volume":"27 2","pages":"1311 - 1345"},"PeriodicalIF":0.5,"publicationDate":"2024-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139956253","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Soergel Calculus with Patches 带补丁的索格尔微积分
IF 0.5 4区 数学
Algebras and Representation Theory Pub Date : 2024-02-23 DOI: 10.1007/s10468-024-10259-9
Leonardo Maltoni
{"title":"Soergel Calculus with Patches","authors":"Leonardo Maltoni","doi":"10.1007/s10468-024-10259-9","DOIUrl":"10.1007/s10468-024-10259-9","url":null,"abstract":"<div><p>We adapt the diagrammatic presentation of the Hecke category to the dg category formed by the standard representatives for the Rouquier complexes. We use this description to recover basic results about these complexes, namely the categorification of the relations of the braid group and the Rouquier formula.</p></div>","PeriodicalId":50825,"journal":{"name":"Algebras and Representation Theory","volume":"27 2","pages":"1287 - 1309"},"PeriodicalIF":0.5,"publicationDate":"2024-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139956178","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Recollements of Derived Categories from Two-Term Big Tilting Complexes 从两期大倾斜复合体衍生类别的重元素
IF 0.5 4区 数学
Algebras and Representation Theory Pub Date : 2024-02-19 DOI: 10.1007/s10468-024-10258-w
Huabo Xu
{"title":"Recollements of Derived Categories from Two-Term Big Tilting Complexes","authors":"Huabo Xu","doi":"10.1007/s10468-024-10258-w","DOIUrl":"10.1007/s10468-024-10258-w","url":null,"abstract":"<div><p>We introduce the notion of big tilting complexes over associative rings, which is a simultaneous generalization of good tilting modules and tilting complexes over rings. Given a two-term big tilting complex over an arbitrary associative ring, we show that the derived module category of its (derived) endomorphism ring is a recollement of the one of the given ring and the one of a universal localization of the endomorphism ring. This recollement generalizes the one established for a good tilting module of projective dimension at most one.</p></div>","PeriodicalId":50825,"journal":{"name":"Algebras and Representation Theory","volume":"27 2","pages":"1267 - 1285"},"PeriodicalIF":0.5,"publicationDate":"2024-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139920798","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Elliptic Quantum Toroidal Algebras, Z-algebra Structure and Representations 椭圆量子环状代数、Z-代数结构与表示
IF 0.5 4区 数学
Algebras and Representation Theory Pub Date : 2024-02-13 DOI: 10.1007/s10468-024-10251-3
Hitoshi Konno, Kazuyuki Oshima
{"title":"Elliptic Quantum Toroidal Algebras, Z-algebra Structure and Representations","authors":"Hitoshi Konno,&nbsp;Kazuyuki Oshima","doi":"10.1007/s10468-024-10251-3","DOIUrl":"10.1007/s10468-024-10251-3","url":null,"abstract":"<div><p>We introduce a new elliptic quantum toroidal algebra <span>(U_{q,kappa ,p}({mathfrak {g}}_{tor}))</span> associated with an arbitrary toroidal algebra <span>({mathfrak {g}}_{tor})</span>. We show that <span>(U_{q,kappa ,p}({mathfrak {g}}_{tor}))</span> contains two elliptic quantum algebras associated with a corresponding affine Lie algebra <span>(widehat{mathfrak {g}})</span> as subalgebras. They are analogue of the horizontal and the vertical subalgebras in the quantum toroidal algebra <span>(U_{q,kappa }({mathfrak {g}}_{tor}))</span>. A Hopf algebroid structure is introduced as a co-algebra structure of <span>(U_{q,kappa ,p}({mathfrak {g}}_{tor}))</span> using the Drinfeld comultiplication. We also investigate the <i>Z</i>-algebra structure of <span>(U_{q,kappa ,p}({mathfrak {g}}_{tor}))</span> and show that the <i>Z</i>-algebra governs the irreducibility of the level <span>((k (ne 0),l))</span>-infinite dimensional <span>(U_{q,kappa ,p}({mathfrak {g}}_{tor}))</span>-modules in the same way as in the elliptic quantum group <span>(U_{q,p}(widehat{mathfrak {g}}))</span>. As an example, we construct the level (1, <i>l</i>) irreducible representation of <span>(U_{q,kappa ,p}({mathfrak {g}}_{tor}))</span> for the simply laced <span>({mathfrak {g}}_{tor})</span>. We also construct the level (0, 1) representation of <span>(U_{q,kappa ,p}({mathfrak {gl}}_{N,tor}))</span> and discuss a conjecture on its geometric interpretation as an action on the torus equivariant elliptic cohomology of the affine <span>(A_{N-1})</span> quiver variety.</p></div>","PeriodicalId":50825,"journal":{"name":"Algebras and Representation Theory","volume":"27 2","pages":"1137 - 1175"},"PeriodicalIF":0.5,"publicationDate":"2024-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139772620","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Presentations of Braid Groups of Type A Arising from ((m+2))-angulations of Regular Polygons 由正多边形的 $$(m+2)$$ -angulation 产生的 A 型辫状花序群的演示文稿
IF 0.5 4区 数学
Algebras and Representation Theory Pub Date : 2024-02-02 DOI: 10.1007/s10468-024-10257-x
Davide Morigi
{"title":"Presentations of Braid Groups of Type A Arising from ((m+2))-angulations of Regular Polygons","authors":"Davide Morigi","doi":"10.1007/s10468-024-10257-x","DOIUrl":"10.1007/s10468-024-10257-x","url":null,"abstract":"<div><p>Coloured quiver mutation, introduced by Buan, A.B., Thomas, H (Adv. Math. <b>222</b>(3), 971–995 2009), gives a combinatorial interpretation of tilting in higher cluster categories. In type <i>A</i> work of Baur, K., Marsh, B. (Trans. Am. Math. Soc. <b>360</b>(11), 5789-5803 2008) shows that <i>m</i>-coloured quivers and <i>m</i>-coloured quiver mutations have a nice geometrical description, given in terms of <span>((m+2))</span>-angulations of a regular polygon, and rotations of an <i>m</i>-diagonal. In this paper, using such correspondence, we describe presentations of braid groups of type <i>A</i> arising from coloured quivers of mutation type <i>A</i>.</p></div>","PeriodicalId":50825,"journal":{"name":"Algebras and Representation Theory","volume":"27 2","pages":"1237 - 1265"},"PeriodicalIF":0.5,"publicationDate":"2024-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10468-024-10257-x.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139663400","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Unique Factorization for Tensor Products of Parabolic Verma Modules 抛物线维尔马模块张量乘的唯一因式分解
IF 0.5 4区 数学
Algebras and Representation Theory Pub Date : 2024-02-01 DOI: 10.1007/s10468-024-10254-0
K. N. Raghavan, V. Sathish Kumar, R. Venkatesh, Sankaran Viswanath
{"title":"Unique Factorization for Tensor Products of Parabolic Verma Modules","authors":"K. N. Raghavan,&nbsp;V. Sathish Kumar,&nbsp;R. Venkatesh,&nbsp;Sankaran Viswanath","doi":"10.1007/s10468-024-10254-0","DOIUrl":"10.1007/s10468-024-10254-0","url":null,"abstract":"<div><p>Let <span>(mathfrak g)</span> be a symmetrizable Kac-Moody Lie algebra with Cartan subalgebra <span>(mathfrak h)</span>. We prove a unique factorization property for tensor products of parabolic Verma modules. More generally, we prove unique factorization for products of characters of parabolic Verma modules when restricted to certain subalgebras of <span>(mathfrak h)</span>. These include fixed point subalgebras of <span>(mathfrak h)</span> under subgroups of diagram automorphisms of <span>(mathfrak g)</span> and twisted graph automorphisms in the affine case.</p></div>","PeriodicalId":50825,"journal":{"name":"Algebras and Representation Theory","volume":"27 2","pages":"1203 - 1220"},"PeriodicalIF":0.5,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139663407","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Preradicals Over Some Group Algebras 某些群代数上的悖论
IF 0.5 4区 数学
Algebras and Representation Theory Pub Date : 2024-01-25 DOI: 10.1007/s10468-024-10256-y
Rogelio Fernández-Alonso, Benigno Mercado, Silvia Gavito
{"title":"Preradicals Over Some Group Algebras","authors":"Rogelio Fernández-Alonso,&nbsp;Benigno Mercado,&nbsp;Silvia Gavito","doi":"10.1007/s10468-024-10256-y","DOIUrl":"10.1007/s10468-024-10256-y","url":null,"abstract":"<div><p>For a field <span>(varvec{K})</span> and a finite group <span>(varvec{G})</span>, we study the lattice of preradicals over the group algebra <span>(varvec{KG})</span>, denoted by <span>(varvec{KG})</span>-<span>(varvec{pr})</span>. We show that if <span>(varvec{KG})</span> is a semisimple algebra, then <span>(varvec{KG})</span>-<span>(varvec{pr})</span> is completely described, and we establish conditions for counting the number of its atoms in some specific cases. If <span>(varvec{KG})</span> is an algebra of finite representation type, but not a semisimple one, we completely describe <span>(varvec{KG})</span>-<span>(varvec{pr})</span> when the characteristic of <span>(varvec{K})</span> is a prime <span>(varvec{p})</span> and <span>(varvec{G})</span> is a cyclic <span>(varvec{p})</span>-group. For group algebras of infinite representation type, we show that the lattices of preradicals over two representative families of such algebras are not sets (in which case, we say the algebras are <span>(varvec{mathfrak {p}})</span>-large). Besides, we provide new examples of <span>(varvec{mathfrak {p}})</span>-large algebras. Finally, we prove the main theorem of this paper which characterizes the representation type of group algebras <span>(varvec{KG})</span> in terms of their lattice of preradicals.</p></div>","PeriodicalId":50825,"journal":{"name":"Algebras and Representation Theory","volume":"27 2","pages":"1221 - 1235"},"PeriodicalIF":0.5,"publicationDate":"2024-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139587328","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Publisher Correction: Quipu Quivers and Nakayama Algebras with Almost Separate Relations 出版商更正:具有几乎独立关系的奎布四元组和中山代数
IF 0.5 4区 数学
Algebras and Representation Theory Pub Date : 2024-01-25 DOI: 10.1007/s10468-024-10252-2
Didrik Fosse
{"title":"Publisher Correction: Quipu Quivers and Nakayama Algebras with Almost Separate Relations","authors":"Didrik Fosse","doi":"10.1007/s10468-024-10252-2","DOIUrl":"10.1007/s10468-024-10252-2","url":null,"abstract":"","PeriodicalId":50825,"journal":{"name":"Algebras and Representation Theory","volume":"27 1","pages":"1011 - 1011"},"PeriodicalIF":0.5,"publicationDate":"2024-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10468-024-10252-2.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142413572","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Quantization of the Loday-Ronco Hopf Algebra Loday-Ronco 霍普夫代数的量子化
IF 0.5 4区 数学
Algebras and Representation Theory Pub Date : 2024-01-20 DOI: 10.1007/s10468-024-10253-1
João N. Esteves
{"title":"A Quantization of the Loday-Ronco Hopf Algebra","authors":"João N. Esteves","doi":"10.1007/s10468-024-10253-1","DOIUrl":"10.1007/s10468-024-10253-1","url":null,"abstract":"<div><p>We propose a quantization algebra of the Loday-Ronco Hopf algebra <span>(k[Y^infty ])</span>, based on the Topological Recursion formula of Eynard and Orantin. We have shown in previous works that the Loday-Ronco Hopf algebra of planar binary trees is a space of solutions for the genus 0 version of Topological Recursion, and that an extension of the Loday Ronco Hopf algebra as to include some new graphs with loops is the correct setting to find a solution space for arbitrary genus. Here we show that this new algebra <span>(k[Y^infty ]_h)</span> is still a Hopf algebra that can be seen in some sense to be made precise in the text as a quantization of the Hopf algebra of planar binary trees, and that the solution space of Topological Recursion <span>(mathcal {A}^h_{text {TopRec}})</span> is a subalgebra of a quotient algebra <span>(mathcal {A}_{text {Reg}}^h)</span> obtained from <span>(k[Y^infty ]_h)</span> that nevertheless doesn’t inherit the Hopf algebra structure. We end the paper with a discussion on the cohomology of <span>(mathcal {A}^h_{text {TopRec}})</span> in low degree.</p></div>","PeriodicalId":50825,"journal":{"name":"Algebras and Representation Theory","volume":"27 2","pages":"1177 - 1201"},"PeriodicalIF":0.5,"publicationDate":"2024-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10468-024-10253-1.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139509411","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Minimal Triangular Structures on Abelian Extensions 阿贝尔扩展上的最小三角形结构
IF 0.5 4区 数学
Algebras and Representation Theory Pub Date : 2024-01-12 DOI: 10.1007/s10468-023-10250-w
Hong Fei Zhang, Kun Zhou
{"title":"Minimal Triangular Structures on Abelian Extensions","authors":"Hong Fei Zhang,&nbsp;Kun Zhou","doi":"10.1007/s10468-023-10250-w","DOIUrl":"10.1007/s10468-023-10250-w","url":null,"abstract":"<div><p>We study minimal triangular structures on abelian extensions. In particular, we construct a family of minimal triangular semisimple Hopf algebras and prove that the Hopf algebra <span>(H_{b:y})</span> in the semisimple Hopf algebras of dimension 16 classified by Y. Kashina in 2000 is minimal triangular Hopf algebra with smallest dimension among non-trivial semisimple triangular Hopf algebras (i.e. not group algebras or their dual).</p></div>","PeriodicalId":50825,"journal":{"name":"Algebras and Representation Theory","volume":"27 2","pages":"1121 - 1136"},"PeriodicalIF":0.5,"publicationDate":"2024-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139465152","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信