Localization of Triangulated Categories with Respect to Extension-Closed Subcategories

Pub Date : 2024-05-31 DOI:10.1007/s10468-024-10272-y
Yasuaki Ogawa
{"title":"Localization of Triangulated Categories with Respect to Extension-Closed Subcategories","authors":"Yasuaki Ogawa","doi":"10.1007/s10468-024-10272-y","DOIUrl":null,"url":null,"abstract":"<div><p>The aim of this paper is to develop a framework for localization theory of triangulated categories <span>\\(\\mathcal {C}\\)</span>, that is, from a given extension-closed subcategory <span>\\(\\mathcal {N}\\)</span> of <span>\\(\\mathcal {C}\\)</span>, we construct a natural extriangulated structure on <span>\\(\\mathcal {C}\\)</span> together with an exact functor <span>\\(Q:\\mathcal {C}\\rightarrow \\widetilde{\\mathcal {C}}_\\mathcal {N}\\)</span> satisfying a suitable universality, which unifies several phenomena. Precisely, a given subcategory <span>\\(\\mathcal {N}\\)</span> is thick if and only if the localization <span>\\(\\widetilde{\\mathcal {C}}_\\mathcal {N}\\)</span> corresponds to a triangulated category. In this case, <i>Q</i> is nothing other than the usual Verdier quotient. Furthermore, it is revealed that <span>\\(\\widetilde{\\mathcal {C}}_\\mathcal {N}\\)</span> is an exact category if and only if <span>\\(\\mathcal {N}\\)</span> satisfies a generating condition <span>\\(\\textsf{Cone}(\\mathcal {N},\\mathcal {N})=\\mathcal {C}\\)</span>. Such an (abelian) exact localization <span>\\(\\widetilde{\\mathcal {C}}_\\mathcal {N}\\)</span> provides a good understanding of some cohomological functors <span>\\(\\mathcal {C}\\rightarrow \\textsf{Ab}\\)</span>, e.g., the heart of <i>t</i>-structures on <span>\\(\\mathcal {C}\\)</span> and the abelian quotient of <span>\\(\\mathcal {C}\\)</span> by a cluster-tilting subcategory <span>\\(\\mathcal {N}\\)</span>.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10468-024-10272-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The aim of this paper is to develop a framework for localization theory of triangulated categories \(\mathcal {C}\), that is, from a given extension-closed subcategory \(\mathcal {N}\) of \(\mathcal {C}\), we construct a natural extriangulated structure on \(\mathcal {C}\) together with an exact functor \(Q:\mathcal {C}\rightarrow \widetilde{\mathcal {C}}_\mathcal {N}\) satisfying a suitable universality, which unifies several phenomena. Precisely, a given subcategory \(\mathcal {N}\) is thick if and only if the localization \(\widetilde{\mathcal {C}}_\mathcal {N}\) corresponds to a triangulated category. In this case, Q is nothing other than the usual Verdier quotient. Furthermore, it is revealed that \(\widetilde{\mathcal {C}}_\mathcal {N}\) is an exact category if and only if \(\mathcal {N}\) satisfies a generating condition \(\textsf{Cone}(\mathcal {N},\mathcal {N})=\mathcal {C}\). Such an (abelian) exact localization \(\widetilde{\mathcal {C}}_\mathcal {N}\) provides a good understanding of some cohomological functors \(\mathcal {C}\rightarrow \textsf{Ab}\), e.g., the heart of t-structures on \(\mathcal {C}\) and the abelian quotient of \(\mathcal {C}\) by a cluster-tilting subcategory \(\mathcal {N}\).

分享
查看原文
关于外延封闭子范畴的三角范畴本地化
本文的目的是发展三角范畴 \(\mathcal {C}\) 的本地化理论框架,也就是说,从 \(\mathcal {C}\) 的一个给定的外延封闭子范畴 \(\mathcal {N}\) 出发,我们在 \(\mathcal {C}\) 上构造了一个自然的外延结构,同时构造了一个精确的函子 \(Q. \mathcal {C}\) :\满足一个合适的普遍性,它统一了几个现象。准确地说,当且仅当局部化 \(\widetilde\{mathcal {C}}_\mathcal {N}\) 对应于一个三角范畴时,给定子范畴 \(\mathcal {N}\) 是厚的。在这种情况下,Q只不过是通常的维迪尔商。此外,我们还可以发现,当且仅当\(\mathcal {N}\)满足生成条件\(\textsf{Cone}(\mathcal {N},\mathcal {N})=\mathcal {C}\)时,\(\widetilde{\mathcal {C}}_\mathcal {N}\)是一个精确范畴。这样一个(无边的)精确定位(\widetilde{\mathcal {C}}_\mathcal {N})为一些同调函数(\(\mathcal {C}\rightarrow\textsf{Ab}\)提供了一个很好的理解,例如、t-structures on \(\mathcal {C}\)的核心以及簇倾斜子类 \(\mathcal {N}\)的无边际商。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信