Algebras and Representation Theory最新文献

筛选
英文 中文
Demazure Filtration of Tensor Product Modules of Current Lie Algebra of Type (A_1) 一类当前李代数张量积模的变形滤波 (A_1)
IF 0.5 4区 数学
Algebras and Representation Theory Pub Date : 2025-04-29 DOI: 10.1007/s10468-025-10334-9
Divya Setia, Tanusree Khandai
{"title":"Demazure Filtration of Tensor Product Modules of Current Lie Algebra of Type (A_1)","authors":"Divya Setia,&nbsp;Tanusree Khandai","doi":"10.1007/s10468-025-10334-9","DOIUrl":"10.1007/s10468-025-10334-9","url":null,"abstract":"<div><p>In this paper we study the structure of finite-dimensional representations of the current Lie algebra of type <span>(A_1)</span>, <span>(mathfrak {sl}_2[t])</span>, which are obtained by taking tensor products of local Weyl modules with Demazure modules. We show that such a representation admits a Demazure flag and obtain a closed formula for the graded multiplicities of the level 2 Demazure modules in the filtration of the tensor product of two local Weyl modules for <span>(mathfrak {sl}_2[t])</span>. Furthermore, we show that the tensor product of a local Weyl module with an irreducible <span>(mathfrak {sl}_2[t])</span> module admits a Demazure filtration and derive the graded character of such tensor product modules. In conjunction with the results of Chari et al. (SIGMA Symmetry Integrability Geom. Methods Appl. <b>10</b>(032), 2014), our findings provide evidence for the conjecture in Blanton (2017) that the tensor product of Demazure modules of levels m and n respectively has a filtration by Demazure modules of level m + n.</p></div>","PeriodicalId":50825,"journal":{"name":"Algebras and Representation Theory","volume":"28 2","pages":"679 - 707"},"PeriodicalIF":0.5,"publicationDate":"2025-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144100238","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Defining Characteristic Case of the Representations of (textrm{GL}_{n}) and (textrm{SL}_{n}) Over Principal Ideal Local Rings 主理想局部环上(textrm{GL}_{n})和(textrm{SL}_{n})表示的定义特征情形
IF 0.5 4区 数学
Algebras and Representation Theory Pub Date : 2025-04-21 DOI: 10.1007/s10468-025-10333-w
Nariel Monteiro
{"title":"The Defining Characteristic Case of the Representations of (textrm{GL}_{n}) and (textrm{SL}_{n}) Over Principal Ideal Local Rings","authors":"Nariel Monteiro","doi":"10.1007/s10468-025-10333-w","DOIUrl":"10.1007/s10468-025-10333-w","url":null,"abstract":"<div><p>Let <span>(W_{r}(mathbb {F}_{q}))</span> be the ring of Witt vectors of length <i>r</i> with residue field <span>(mathbb {F}_{q})</span> of characteristic <i>p</i>. In this paper, we study the defining characteristic case of the representations of <span>(textrm{GL}_{n})</span> and <span>(textrm{SL}_{n})</span> over the principal ideal local rings <span>(W_{r}(mathbb {F}_{q}))</span> and <span>(mathbb {F}_{q}[t]/t^{r})</span>. Let <span>({textbf{G}})</span> be either <span>(textrm{GL}_{n})</span> or <span>(textrm{SL}_{n})</span> and <i>F</i> a perfect field of characteristic <i>p</i>, we prove that for most <i>p</i> the group algebras <span>(F[{textbf{G}}(W_{r}(mathbb {F}_{q}))])</span> and <span>(F[{textbf{G}}(mathbb {F}_{q}[t]/t^{r})])</span> are not stably equivalent of Morita type. Thus, the group algebras <span>(F[{textbf{G}}(W_{r}(mathbb {F}_{q}))])</span> and <span>(F[{textbf{G}}(mathbb {F}_{q}[t]/t^{r})])</span> are not isomorphic in the defining characteristic case.</p></div>","PeriodicalId":50825,"journal":{"name":"Algebras and Representation Theory","volume":"28 2","pages":"669 - 677"},"PeriodicalIF":0.5,"publicationDate":"2025-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144100146","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Involutions in Coxeter groups 考克斯特群体的内讧
IF 0.5 4区 数学
Algebras and Representation Theory Pub Date : 2025-04-08 DOI: 10.1007/s10468-025-10332-x
Anna Reimann, Yuri Santos Rego, Petra Schwer, Olga Varghese
{"title":"Involutions in Coxeter groups","authors":"Anna Reimann,&nbsp;Yuri Santos Rego,&nbsp;Petra Schwer,&nbsp;Olga Varghese","doi":"10.1007/s10468-025-10332-x","DOIUrl":"10.1007/s10468-025-10332-x","url":null,"abstract":"<div><p>We combinatorially characterize the number <span>(textrm{cc}_2)</span> of conjugacy classes of involutions in any Coxeter group in terms of higher rank odd graphs. This notion naturally generalizes the concept of odd graphs, used previously to count the number of conjugacy classes of reflections. Moreover, we provide formulae for finite and affine types, besides computing <span>(textrm{cc}_2)</span> for all triangle groups and RACGs.</p></div>","PeriodicalId":50825,"journal":{"name":"Algebras and Representation Theory","volume":"28 2","pages":"647 - 667"},"PeriodicalIF":0.5,"publicationDate":"2025-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10468-025-10332-x.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144100240","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On Interpolation Categories for the Hyperoctahedral Group 关于高八面体群的插值范畴
IF 0.5 4区 数学
Algebras and Representation Theory Pub Date : 2025-04-01 DOI: 10.1007/s10468-025-10331-y
Th. Heidersdorf, G. Tyriard
{"title":"On Interpolation Categories for the Hyperoctahedral Group","authors":"Th. Heidersdorf,&nbsp;G. Tyriard","doi":"10.1007/s10468-025-10331-y","DOIUrl":"10.1007/s10468-025-10331-y","url":null,"abstract":"<div><p>Two different types of Deligne categories have been defined to interpolate the finite dimensional complex representations of the hyperoctahedral group. The first one, initially defined by Knop and then further studied by Likeng and Savage, uses a categorical analogue of the permutation representation as a tensor generator. The second one, due to Flake and Maassen, is tensor generated by a categorical analogue of the reflection representation. We construct a symmetric monoidal functor between the two and show that it is an equivalence of symmetric monoidal categories.</p></div>","PeriodicalId":50825,"journal":{"name":"Algebras and Representation Theory","volume":"28 2","pages":"613 - 646"},"PeriodicalIF":0.5,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10468-025-10331-y.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144100167","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Partial Classification of Simple Regular Representations of Bimodules Type ((2,,2)) Over the Field of Laurent Series 双模型简单正则表示((2,,2))在Laurent级数域上的部分分类
IF 0.5 4区 数学
Algebras and Representation Theory Pub Date : 2025-03-26 DOI: 10.1007/s10468-025-10327-8
Hernán Giraldo, David Reynoso-Mercado, Pedro Rizzo
{"title":"A Partial Classification of Simple Regular Representations of Bimodules Type ((2,,2)) Over the Field of Laurent Series","authors":"Hernán Giraldo,&nbsp;David Reynoso-Mercado,&nbsp;Pedro Rizzo","doi":"10.1007/s10468-025-10327-8","DOIUrl":"10.1007/s10468-025-10327-8","url":null,"abstract":"<div><p>In this paper, we use Galois descent techniques to find suitable representatives of the regular simple representations of the species of type (2, 2) over <span>(k_n:= k[varepsilon ^{1/n}])</span>, where <i>n</i> is a positive integer and <span>(k:=mathbb {C}(!(varepsilon )!))</span> is the field of Laurent series over the complexes. These regular representations are essential for the definition of canonical algebras. Our work is inspired by the work done for species of type (1, 4) on <i>k</i> in Geiss and Reynoso-Mercado (Bol. Soc. Mat. Mex. <b>30</b>(3):87, 2024). We presents all the regular simple representations on the <i>n</i>-crown quiver, and from these, we establish a partial classification of regular simple representations of bimodules type (2, 2).</p></div>","PeriodicalId":50825,"journal":{"name":"Algebras and Representation Theory","volume":"28 2","pages":"549 - 577"},"PeriodicalIF":0.5,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10468-025-10327-8.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144100236","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
PBW-deformations of Graded Algebras with Braiding Relations 具有编织关系的梯度代数的pbw变形
IF 0.5 4区 数学
Algebras and Representation Theory Pub Date : 2025-03-18 DOI: 10.1007/s10468-025-10328-7
Yujie Gao, Shilin Yang
{"title":"PBW-deformations of Graded Algebras with Braiding Relations","authors":"Yujie Gao,&nbsp;Shilin Yang","doi":"10.1007/s10468-025-10328-7","DOIUrl":"10.1007/s10468-025-10328-7","url":null,"abstract":"<div><p>The aim of this paper is to describe all PBW-deformations of the connected graded <span>({mathbb {K}})</span>-algebra <span>(mathcal {A})</span> generated by <span>(x_i, 1le ile n,)</span> with the braiding relations: </p><div><div><span>$$begin{aligned} left{ begin{array}{ll} x_i^2=0, 1le ile n, x_ix_j=x_jx_i, {|j-i|} &gt;1, x_ix_{i+1}x_i=x_{i+1}x_ix_{i+1}, 1le ile n-1. end{array}right. end{aligned}$$</span></div></div><p>Firstly, the complexity <span>(mathcal {C}({mathcal {A}}))</span> of the algebra <span>({mathcal {A}})</span> is computed. Then all PBW-deformations of <span>(mathcal {A})</span> when <span>(nge 2)</span> are given explicitly with the help of the general PBW-deformation theory introduced by Cassidy and Shelton. Finally, it is shown that each non-trivial PBW-deformation of <span>(mathcal {A})</span> is isomorphic to a Iwahori-Hecke algebra <span>(H_q(n+1))</span> (of type <i>A</i>) with <i>n</i> generators and an appropriate parameter <i>q</i>. Here, trivial PBW-deformations of <span>({mathcal {A}})</span> mean that those PBW-deformations that are isomorphic to <span>({mathcal {A}}.)</span></p></div>","PeriodicalId":50825,"journal":{"name":"Algebras and Representation Theory","volume":"28 2","pages":"579 - 611"},"PeriodicalIF":0.5,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144100229","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
(D_7^{(1)})- Geometric Crystal at the Spin Node (D_7^{(1)})-旋转节点的几何晶体
IF 0.5 4区 数学
Algebras and Representation Theory Pub Date : 2025-03-12 DOI: 10.1007/s10468-025-10325-w
Kailash C. Misra, Toshiki Nakashima, Suchada Pongprasert
{"title":"(D_7^{(1)})- Geometric Crystal at the Spin Node","authors":"Kailash C. Misra,&nbsp;Toshiki Nakashima,&nbsp;Suchada Pongprasert","doi":"10.1007/s10468-025-10325-w","DOIUrl":"10.1007/s10468-025-10325-w","url":null,"abstract":"<div><p>Let <span>(mathfrak {g})</span> be an affine Lie algebra with index set <span>(varvec{I})</span> = {<b>0, 1, 2,</b> <span>(ldots , varvec{n}})</span>. It is conjectured that for each Dynkin node <span>(varvec{k} in varvec{I} setminus {{textbf {0}}})</span> the affine Lie algebra <span>(mathfrak {g})</span> has a positive geometric crystal. In this paper, we construct a positive geometric crystal for the affine Lie algebra <span>(varvec{D}_{textbf {7}}^{{textbf {(1)}}})</span> corresponding to the Dynkin spin node <span>(varvec{k}= {textbf {7}})</span>.</p></div>","PeriodicalId":50825,"journal":{"name":"Algebras and Representation Theory","volume":"28 2","pages":"509 - 530"},"PeriodicalIF":0.5,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144100225","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Primed Decomposition Tableaux and Extended Queer Crystals 启动分解表和扩展酷儿晶体
IF 0.5 4区 数学
Algebras and Representation Theory Pub Date : 2025-03-11 DOI: 10.1007/s10468-025-10323-y
Eric Marberg, Kam Hung Tong
{"title":"Primed Decomposition Tableaux and Extended Queer Crystals","authors":"Eric Marberg,&nbsp;Kam Hung Tong","doi":"10.1007/s10468-025-10323-y","DOIUrl":"10.1007/s10468-025-10323-y","url":null,"abstract":"<div><p>Our previous work introduced a category of extended queer crystals, whose connected normal objects have unique highest weight elements and characters that are Schur <i>Q</i>-polynomials. The initial models for such crystals were based on semistandard shifted tableaux. Here, we introduce a simpler construction using certain “primed” decomposition tableaux, which slightly generalize the decomposition tableaux used in work of Grantcharov et al. This leads to a new, shorter proof of the highest weight properties of the normal subcategory of extended queer crystals. Along the way, we analyze a primed extension of Grantcharov et al.’s insertion scheme for decomposition tableaux.</p></div>","PeriodicalId":50825,"journal":{"name":"Algebras and Representation Theory","volume":"28 2","pages":"445 - 482"},"PeriodicalIF":0.5,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10468-025-10323-y.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144100278","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Projections of Nilpotent Orbits in a Simple Lie Algebra and Shared Orbits 简单李代数中幂零轨道的投影与共享轨道
IF 0.5 4区 数学
Algebras and Representation Theory Pub Date : 2025-03-11 DOI: 10.1007/s10468-025-10322-z
Dmitri I. Panyushev
{"title":"Projections of Nilpotent Orbits in a Simple Lie Algebra and Shared Orbits","authors":"Dmitri I. Panyushev","doi":"10.1007/s10468-025-10322-z","DOIUrl":"10.1007/s10468-025-10322-z","url":null,"abstract":"<div><p>Let <i>G</i> be a simple algebraic group and <span>(mathcal {O}subset {mathfrak g}={mathrm {Lie,}}G)</span> a nilpotent orbit. If <i>H</i> is a reductive subgroup of <i>G</i> with <span>({mathfrak h}={mathrm {Lie,}}H)</span>, then <span>({mathfrak g}={mathfrak h}oplus {mathfrak m})</span>, where <span>({mathfrak m}={mathfrak h}^perp )</span>. We consider the natural projections <span>(varvec{varphi }: overline{mathcal {O}}rightarrow mathfrak {h})</span> and <span>(varvec{psi }: overline{mathcal {O}}rightarrow mathfrak {m})</span> and two related properties of <span>((H, mathcal {O}))</span>: </p><div><div><span>$$ (mathcal {P}_1): overline{mathcal {O}}cap {mathfrak m}={0}; qquad (mathcal {P}_2): H text { has a dense orbit in } mathcal {O}. $$</span></div></div><p>It is shown that either of these properties implies that <i>H</i> is semisimple. We prove that <span>((mathcal {P}_1))</span> implies <span>((mathcal {P}_2))</span> for all <span>(mathcal {O})</span> and the converse holds for <span>(mathcal {O}_textsf{min})</span>, the minimal nilpotent orbit. If <span>((mathcal {P}_1))</span> holds, then <span>(varvec{varphi })</span> is finite and <span>([varvec{varphi }(e),varvec{psi }(e)]=0)</span> for all <span>(ein mathcal {O})</span>. Then <span>(overline{varvec{varphi }(mathcal {O})})</span> is the closure of a nilpotent <i>H</i>-orbit <span>(mathcal {O}')</span>. The orbit <span>(mathcal {O}')</span> is “shared” in the sense of Brylinski–Kostant (J. Am. Math. Soc. <b>7</b>(2), 269–298 1994). We obtain a classification of all pairs <span>((H,mathcal {O}))</span> with property <span>((mathcal {P}_1))</span> and discuss various relations between <span>(mathcal {O})</span> and <span>(mathcal {O}')</span>. In particular, we detect an omission in the list of pairs of simple groups (<i>H</i>, <i>G</i>) having a shared orbit that was given by Brylinski and Kostant. It is also proved that <span>((mathcal {P}_1))</span> for <span>((H,mathcal {O}_textsf{min}))</span> implies that <span>(overline{G{cdot }varvec{varphi }(mathcal {O}_textsf{min})}=overline{G{cdot }varvec{psi }(mathcal {O}_textsf{min})})</span>.</p></div>","PeriodicalId":50825,"journal":{"name":"Algebras and Representation Theory","volume":"28 2","pages":"423 - 444"},"PeriodicalIF":0.5,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144100279","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Scalar Extensions of Quiver Representations Over (mathbb {F}_1) 上颤振表示的标量扩展 (mathbb {F}_1)
IF 0.5 4区 数学
Algebras and Representation Theory Pub Date : 2025-03-07 DOI: 10.1007/s10468-025-10326-9
Markus Kleinau
{"title":"Scalar Extensions of Quiver Representations Over (mathbb {F}_1)","authors":"Markus Kleinau","doi":"10.1007/s10468-025-10326-9","DOIUrl":"10.1007/s10468-025-10326-9","url":null,"abstract":"<div><p>Let <i>V</i> and <i>W</i> be quiver representations over <span>(mathbb {F}_1)</span> and let <i>K</i> be a field. The scalar extensions <span>(V^K)</span> and <span>(W^K)</span> are quiver representations over <i>K</i> with a distinguished, very well-behaved basis. We construct a basis of <span>({{,textrm{Hom},}}_{KQ}(V^K,W^K))</span> generalising the well-known basis of the morphism spaces between string and tree modules. We use this basis to give a combinatorial characterisation of absolutely indecomposable representations. Furthermore, we show that indecomposable representations with finite nice length are absolutely indecomposable. This answers a question of Jun and Sistko.</p></div>","PeriodicalId":50825,"journal":{"name":"Algebras and Representation Theory","volume":"28 2","pages":"531 - 548"},"PeriodicalIF":0.5,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10468-025-10326-9.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144100201","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信