{"title":"A Generalization of Quantum Lakshmibai-Seshadri Paths for an Arbitrary Weight","authors":"Takafumi Kouno, Satoshi Naito","doi":"10.1007/s10468-024-10298-2","DOIUrl":"10.1007/s10468-024-10298-2","url":null,"abstract":"<div><p>We construct an injective weight-preserving map (called the forgetful map) from the set of all admissible subsets in the quantum alcove model associated to an arbitrary weight. The image of this forgetful map can be explicitly described by introducing the notion of “interpolated quantum Lakshmibai-Seshadri (QLS for short) paths”, which can be thought of as a generalization of quantum Lakshmibai-Seshadri paths. As an application, we reformulate, in terms of interpolated QLS paths, an identity of Chevalley type for the graded characters of Demazure submodules of a level-zero extremal weight module over a quantum affine algebra, which is a representation-theoretic analog of the Chevalley formula for the torus-equivariant <i>K</i>-group of a semi-infinite flag manifold.</p></div>","PeriodicalId":50825,"journal":{"name":"Algebras and Representation Theory","volume":"27 6","pages":"2321 - 2353"},"PeriodicalIF":0.5,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10468-024-10298-2.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142994451","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Flat Quasi-coherent Sheaves as Directed Colimits, and Quasi-coherent Cotorsion Periodicity","authors":"Leonid Positselski, Jan Š’ovíček","doi":"10.1007/s10468-024-10296-4","DOIUrl":"10.1007/s10468-024-10296-4","url":null,"abstract":"<div><p>We show that every flat quasi-coherent sheaf on a quasi-compact quasi-separated scheme is a directed colimit of locally countably presentable flat quasi-coherent sheaves. More generally, the same assertion holds for any countably quasi-compact, countably quasi-separated scheme. Moreover, for three categories of complexes of flat quasi-coherent sheaves, we show that all complexes in the category can be obtained as directed colimits of complexes of locally countably presentable flat quasi-coherent sheaves from the same category. In particular, on a quasi-compact semi-separated scheme, every flat quasi-coherent sheaf is a directed colimit of flat quasi-coherent sheaves of finite projective dimension. In the second part of the paper, we discuss cotorsion periodicity in category-theoretic context, generalizing an argument of Bazzoni, Cortés-Izurdiaga, and Estrada. As the main application, we deduce the assertion that any cotorsion-periodic quasi-coherent sheaf on a quasi-compact semi-separated scheme is cotorsion.</p></div>","PeriodicalId":50825,"journal":{"name":"Algebras and Representation Theory","volume":"27 6","pages":"2267 - 2293"},"PeriodicalIF":0.5,"publicationDate":"2024-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10468-024-10296-4.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142994513","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Clebsch-Gordan Coefficients for Macdonald Polynomials","authors":"Aritra Bhattacharya, Arun Ram","doi":"10.1007/s10468-024-10303-8","DOIUrl":"10.1007/s10468-024-10303-8","url":null,"abstract":"<div><p>In this paper we use the double affine Hecke algebra to compute the Macdonald polynomial products <span>(E_ell P_m)</span> and <span>(P_ell P_m)</span> for type <span>(SL_2)</span> and type <span>(GL_2)</span> Macdonald polynomials. Our method follows the ideas of Martha Yip but executes a compression to reduce the sum from <span>(2cdot 3^{ell -1})</span> signed terms to <span>(2ell )</span> positive terms. We show that our rule for <span>(P_ell P_m)</span> is equivalent to a special case of the Pieri rule of Macdonald. Our method shows that computing <span>(E_ell {textbf {1}}_0)</span> and <span>({textbf {1}}_0 E_ell {textbf {1}}_0)</span> in terms of a special basis of the double affine Hecke algebra provides universal compressed formulas for multiplication by <span>(E_ell )</span> and <span>(P_ell )</span>. The formulas for a specific products <span>(E_ell P_m)</span> and <span>(P_ell P_m)</span> are obtained by evaluating the universal formulas at <span>(t^{-frac{1}{2}}q^{-frac{m}{2}})</span>.</p></div>","PeriodicalId":50825,"journal":{"name":"Algebras and Representation Theory","volume":"27 6","pages":"2423 - 2464"},"PeriodicalIF":0.5,"publicationDate":"2024-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10468-024-10303-8.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142994514","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Isomorphism Problems and Groups of Automorphisms for Ore Extensions (K[x][y; ffrac{d}{dx} ]) (Prime Characteristic)","authors":"V. V. Bavula","doi":"10.1007/s10468-024-10301-w","DOIUrl":"10.1007/s10468-024-10301-w","url":null,"abstract":"<div><p>Let <span>(Lambda (f) = K[x][y; ffrac{d}{dx} ])</span> be an Ore extension of a polynomial algebra <i>K</i>[<i>x</i>] over an arbitrary field <i>K</i> of characteristic <span>(p>0)</span> where <span>(fin K[x])</span>. For each polynomial <i>f</i>, the automorphism group of the algebras <span>(Lambda (f))</span> is explicitly described. The automorphism group <span>(textrm{Aut}_K(Lambda (f))=mathbb {S}rtimes G_f)</span> is a semidirect product of two explicit groups where <span>(G_f)</span> is the <i>eigengroup</i> of the polynomial <i>f</i> (the set of all automorphisms of <i>K</i>[<i>x</i>] such that <i>f</i> is their common eigenvector). For each polynomial <i>f</i>, the eigengroup <span>(G_f)</span> is explicitly described. It is proven that every subgroup of <span>(textrm{Aut}_K(K[x]))</span> is the eigengroup of a polynomial. It is proven that the Krull and global dimensions of the algebra <span>(Lambda (f))</span> are 2. The prime, completely prime, primitive and maximal ideals of the algebra <span>(Lambda (f))</span> are classified.</p></div>","PeriodicalId":50825,"journal":{"name":"Algebras and Representation Theory","volume":"27 6","pages":"2389 - 2422"},"PeriodicalIF":0.5,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10468-024-10301-w.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142994558","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Hopf Algebra (Co)actions on Rational Functions","authors":"Ulrich Krähmer, Blessing Bisola Oni","doi":"10.1007/s10468-024-10294-6","DOIUrl":"10.1007/s10468-024-10294-6","url":null,"abstract":"<div><p>In the theory of quantum automorphism groups, one constructs Hopf algebras acting on an algebra <i>K</i> from certain algebra morphisms <span>( sigma :K rightarrow textrm{M}_n(K))</span>. This approach is applied to the field <span>(K=k(t))</span> of rational functions, and it is investigated when these actions restrict to actions on the coordinate ring <span>(B=k[t^2,t^3])</span> of the cusp. An explicit example is described in detail and shown to define a new quantum homogeneous space structure on the cusp.</p></div>","PeriodicalId":50825,"journal":{"name":"Algebras and Representation Theory","volume":"27 6","pages":"2187 - 2216"},"PeriodicalIF":0.5,"publicationDate":"2024-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10468-024-10294-6.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142995681","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"3-Preprojective Algebras of Type D","authors":"Jordan Haden","doi":"10.1007/s10468-024-10297-3","DOIUrl":"10.1007/s10468-024-10297-3","url":null,"abstract":"<div><p>We present a family of selfinjective algebras of type D, which arise from the 3-preprojective algebras of type A by taking a <span>(mathbb {Z}_3)</span>-quotient. We show that a subset of these are themselves 3-preprojective algebras, and that the associated 2-representation-finite algebras are fractional Calabi-Yau. In addition, we show our work is connected to modular invariants for SU(3).</p></div>","PeriodicalId":50825,"journal":{"name":"Algebras and Representation Theory","volume":"27 6","pages":"2295 - 2320"},"PeriodicalIF":0.5,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10468-024-10297-3.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142995278","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Fabio Calderón, Hongdi Huang, Elizabeth Wicks, Robert Won
{"title":"Symmetries of Algebras Captured by Actions of Weak Hopf Algebras","authors":"Fabio Calderón, Hongdi Huang, Elizabeth Wicks, Robert Won","doi":"10.1007/s10468-024-10295-5","DOIUrl":"10.1007/s10468-024-10295-5","url":null,"abstract":"<div><p>In this paper, we present a generalization of well-established results regarding symmetries of <span>(Bbbk )</span>-algebras, where <span>(Bbbk )</span> is a field. Traditionally, for a <span>(Bbbk )</span>-algebra <i>A</i>, the group of <span>(Bbbk )</span>-algebra automorphisms of <i>A</i> captures the symmetries of <i>A</i> via group actions. Similarly, the Lie algebra of derivations of <i>A</i> captures the symmetries of <i>A</i> via Lie algebra actions. In this paper, given a category <span>(mathcal {C})</span> whose objects possess <span>(Bbbk )</span>-linear monoidal categories of modules, we introduce an objec <span>(operatorname {Sym}_{mathcal {C}}(A))</span> that captures the symmetries of <i>A</i> via actions of objects in <span>(mathcal {C})</span>. Our study encompasses various categories whose objects include groupoids, Lie algebroids, and more generally, cocommutative weak Hopf algebras. Notably, we demonstrate that for a positively graded non-connected <span>(Bbbk )</span>-algebra <i>A</i>, some of its symmetries are naturally captured within the weak Hopf framework.</p></div>","PeriodicalId":50825,"journal":{"name":"Algebras and Representation Theory","volume":"27 6","pages":"2217 - 2266"},"PeriodicalIF":0.5,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142994464","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Equational Quantum Quasigroups","authors":"Jonathan D. H. Smith","doi":"10.1007/s10468-024-10300-x","DOIUrl":"10.1007/s10468-024-10300-x","url":null,"abstract":"<div><p>As a self-dual framework to unify the study of quasigroups and Hopf algebras, quantum quasigroups are defined using a quantum analogue of the combinatorial approach to classical quasigroups, merely requiring invertibility of the left and right composites. In this paper, quantum quasigroups are redefined with a quantum analogue of the equational approach to classical quasigroups. Here, the left and right composites of auxiliary quantum quasigroups participate in diagrams whose commutativity witnesses the required invertibilities. Whenever the original and two auxiliary quantum quasigroups appear on an equal footing, the triality symmetry of the language of equational quasigroups is replicated. In particular, the problem arises as to when this triality emerges in the Hopf algebra context.</p></div>","PeriodicalId":50825,"journal":{"name":"Algebras and Representation Theory","volume":"27 6","pages":"2355 - 2387"},"PeriodicalIF":0.5,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142994358","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"On J-folded Alcove Paths and Combinatorial Representations of Affine Hecke Algebras","authors":"Jérémie Guilhot, Eloise Little, James Parkinson","doi":"10.1007/s10468-024-10293-7","DOIUrl":"10.1007/s10468-024-10293-7","url":null,"abstract":"<div><p>We introduce the combinatorial model of <i>J</i>-folded alcove paths in an affine Weyl group and construct representations of affine Hecke algebras using this model. We study boundedness of these representations, and we state conjectures linking our combinatorial formulae to Kazhdan-Lusztig theory and Opdam’s Plancherel Theorem.</p></div>","PeriodicalId":50825,"journal":{"name":"Algebras and Representation Theory","volume":"27 6","pages":"2131 - 2185"},"PeriodicalIF":0.5,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10468-024-10293-7.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142994378","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Generalised Lat-Igusa-Todorov Algebras and Morita Contexts","authors":"Marcelo Lanzilotta, José Vivero","doi":"10.1007/s10468-024-10289-3","DOIUrl":"10.1007/s10468-024-10289-3","url":null,"abstract":"<div><p>In this paper we define (special) GLIT classes and (special) GLIT algebras. We prove that GLIT algebras, which generalise Lat-Igusa-Todorov algebras, satisfy the finitistic dimension conjecture and give several properties and examples. In addition we show that special GLIT algebras are exactly those that have finite finitistic dimension. Lastly we study Morita algebras arising from a Morita context and give conditions for them to be (special) GLIT in terms of the algebras and bimodules used in their definition. As a consequence we obtain simple conditions for a triangular matrix algebra to be (special) GLIT and also prove that the tensor product of a GLIT <span>(mathbb {K})</span>-algebra with a path algebra of a finite quiver without oriented cycles is GLIT.</p></div>","PeriodicalId":50825,"journal":{"name":"Algebras and Representation Theory","volume":"27 6","pages":"2045 - 2066"},"PeriodicalIF":0.5,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10468-024-10289-3.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142994470","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}