{"title":"Gorenstein \\(\\mathcal{F}\\mathcal{P}_n\\) -平面模和弱全局维","authors":"Víctor Becerril","doi":"10.1007/s10468-025-10352-7","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper we characterize the relative Gorenstein weak global dimension of the Gorenstein <span>\\(\\mathcal {B}\\)</span>-flat <i>R</i>-modules and projectively coresolved Gorenstein <span>\\(\\mathcal {B}\\)</span>-flat <i>R</i>-modules recently studied by S. Estrada, A. Iacob, and M. A. Pérez, which are a relativisation of the ones introduced by J. Šaroch and J. Št’ovíchěk. As application we prove that the weak global dimension with respect to the Gorenstein <span>\\(\\textrm{FP}_n\\)</span>-flat <i>R</i>-modules is finite over a Gorenstein <i>n</i>-coherent ring <i>R</i> and in this case coincides with the flat dimension of the right <span>\\(\\textrm{FP}_n\\)</span>-injective <i>R</i>-modules. This result extends the known for Gorenstein flat modules over Iwanaga-Gorenstein and Ding-Chen rings. We also show that there is a close relationship between the relative global dimension of the Gorenstein <span>\\(\\textrm{FP}_n\\)</span>-projectives and the Gorenstein weak global dimension respect to the class of Gorenstein <span>\\(\\textrm{FP}_n\\)</span>-flat <i>R</i>-modules. We also get an hereditary and complete cotorsion triple and consequently a balanced pair.</p></div>","PeriodicalId":50825,"journal":{"name":"Algebras and Representation Theory","volume":"28 4","pages":"1073 - 1091"},"PeriodicalIF":0.6000,"publicationDate":"2025-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10468-025-10352-7.pdf","citationCount":"0","resultStr":"{\"title\":\"Gorenstein \\\\(\\\\mathcal{F}\\\\mathcal{P}_n\\\\)-Flat Modules and Weak Global Dimensions\",\"authors\":\"Víctor Becerril\",\"doi\":\"10.1007/s10468-025-10352-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper we characterize the relative Gorenstein weak global dimension of the Gorenstein <span>\\\\(\\\\mathcal {B}\\\\)</span>-flat <i>R</i>-modules and projectively coresolved Gorenstein <span>\\\\(\\\\mathcal {B}\\\\)</span>-flat <i>R</i>-modules recently studied by S. Estrada, A. Iacob, and M. A. Pérez, which are a relativisation of the ones introduced by J. Šaroch and J. Št’ovíchěk. As application we prove that the weak global dimension with respect to the Gorenstein <span>\\\\(\\\\textrm{FP}_n\\\\)</span>-flat <i>R</i>-modules is finite over a Gorenstein <i>n</i>-coherent ring <i>R</i> and in this case coincides with the flat dimension of the right <span>\\\\(\\\\textrm{FP}_n\\\\)</span>-injective <i>R</i>-modules. This result extends the known for Gorenstein flat modules over Iwanaga-Gorenstein and Ding-Chen rings. We also show that there is a close relationship between the relative global dimension of the Gorenstein <span>\\\\(\\\\textrm{FP}_n\\\\)</span>-projectives and the Gorenstein weak global dimension respect to the class of Gorenstein <span>\\\\(\\\\textrm{FP}_n\\\\)</span>-flat <i>R</i>-modules. We also get an hereditary and complete cotorsion triple and consequently a balanced pair.</p></div>\",\"PeriodicalId\":50825,\"journal\":{\"name\":\"Algebras and Representation Theory\",\"volume\":\"28 4\",\"pages\":\"1073 - 1091\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2025-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10468-025-10352-7.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Algebras and Representation Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10468-025-10352-7\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebras and Representation Theory","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10468-025-10352-7","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
本文刻画了S. Estrada、a . Iacob和M. a . p录影带雷斯最近研究的Gorenstein \(\mathcal {B}\) -flat r -模和投影共分解的Gorenstein \(\mathcal {B}\) -flat r -模的相对Gorenstein弱整体维数,它们是J. Šaroch和J. Št 'ovíchěk引入的相对整体维数的一种相对论。作为应用,我们证明了关于Gorenstein \(\textrm{FP}_n\) -平面R模的弱整体维数在Gorenstein n-相干环R上是有限的,并且在这种情况下与右\(\textrm{FP}_n\) -内射R模的平面维数相一致。这个结果在Iwanaga-Gorenstein环和Ding-Chen环上扩展了已知的Gorenstein平面模。我们还证明了对于Gorenstein \(\textrm{FP}_n\) -平面r模类,Gorenstein \(\textrm{FP}_n\) -投影的相对整体维数与Gorenstein弱整体维数之间存在密切的关系。我们也得到一个遗传的和完全的扭转三重,因此是一个平衡对。
Gorenstein \(\mathcal{F}\mathcal{P}_n\)-Flat Modules and Weak Global Dimensions
In this paper we characterize the relative Gorenstein weak global dimension of the Gorenstein \(\mathcal {B}\)-flat R-modules and projectively coresolved Gorenstein \(\mathcal {B}\)-flat R-modules recently studied by S. Estrada, A. Iacob, and M. A. Pérez, which are a relativisation of the ones introduced by J. Šaroch and J. Št’ovíchěk. As application we prove that the weak global dimension with respect to the Gorenstein \(\textrm{FP}_n\)-flat R-modules is finite over a Gorenstein n-coherent ring R and in this case coincides with the flat dimension of the right \(\textrm{FP}_n\)-injective R-modules. This result extends the known for Gorenstein flat modules over Iwanaga-Gorenstein and Ding-Chen rings. We also show that there is a close relationship between the relative global dimension of the Gorenstein \(\textrm{FP}_n\)-projectives and the Gorenstein weak global dimension respect to the class of Gorenstein \(\textrm{FP}_n\)-flat R-modules. We also get an hereditary and complete cotorsion triple and consequently a balanced pair.
期刊介绍:
Algebras and Representation Theory features carefully refereed papers relating, in its broadest sense, to the structure and representation theory of algebras, including Lie algebras and superalgebras, rings of differential operators, group rings and algebras, C*-algebras and Hopf algebras, with particular emphasis on quantum groups.
The journal contains high level, significant and original research papers, as well as expository survey papers written by specialists who present the state-of-the-art of well-defined subjects or subdomains. Occasionally, special issues on specific subjects are published as well, the latter allowing specialists and non-specialists to quickly get acquainted with new developments and topics within the field of rings, algebras and their applications.