舒伯特A型品种botsamelson分解的Quiver Grassmannians

IF 0.6 4区 数学 Q3 MATHEMATICS
Giulia Iezzi
{"title":"舒伯特A型品种botsamelson分解的Quiver Grassmannians","authors":"Giulia Iezzi","doi":"10.1007/s10468-025-10356-3","DOIUrl":null,"url":null,"abstract":"<div><p>We realise the Bott-Samelson resolutions of type A Schubert varieties as quiver Grassmannians. In order to explicitly describe this isomorphism, we introduce the notion of a <i>geometrically compatible</i> decomposition for any permutation in the symmetric group <span>\\(S_n\\)</span>. For smooth type A Schubert varieties, we identify a suitable dimension vector such that the corresponding quiver Grassmannian is isomorphic to the Schubert variety. To obtain these isomorphisms, we construct a special quiver with relations and investigate two classes of quiver Grassmannians for this quiver.</p></div>","PeriodicalId":50825,"journal":{"name":"Algebras and Representation Theory","volume":"28 4","pages":"1139 - 1158"},"PeriodicalIF":0.6000,"publicationDate":"2025-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10468-025-10356-3.pdf","citationCount":"0","resultStr":"{\"title\":\"Quiver Grassmannians for the Bott-Samelson Resolution of Type A Schubert Varieties\",\"authors\":\"Giulia Iezzi\",\"doi\":\"10.1007/s10468-025-10356-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We realise the Bott-Samelson resolutions of type A Schubert varieties as quiver Grassmannians. In order to explicitly describe this isomorphism, we introduce the notion of a <i>geometrically compatible</i> decomposition for any permutation in the symmetric group <span>\\\\(S_n\\\\)</span>. For smooth type A Schubert varieties, we identify a suitable dimension vector such that the corresponding quiver Grassmannian is isomorphic to the Schubert variety. To obtain these isomorphisms, we construct a special quiver with relations and investigate two classes of quiver Grassmannians for this quiver.</p></div>\",\"PeriodicalId\":50825,\"journal\":{\"name\":\"Algebras and Representation Theory\",\"volume\":\"28 4\",\"pages\":\"1139 - 1158\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2025-08-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10468-025-10356-3.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Algebras and Representation Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10468-025-10356-3\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebras and Representation Theory","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10468-025-10356-3","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们认识到A型舒伯特品种的波特-萨缪尔森分辨率为颤抖的格拉斯曼分辨率。为了明确地描述这种同构,我们引入了对对称群\(S_n\)中任意置换的几何相容分解的概念。对于光滑A型Schubert变种,我们确定了一个合适的维向量,使得相应的抖动格拉斯曼算子与Schubert变种同构。为了得到这些同构,我们构造了一个特殊的带关系的颤振,并研究了该类颤振的两类格拉斯曼算子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Quiver Grassmannians for the Bott-Samelson Resolution of Type A Schubert Varieties

We realise the Bott-Samelson resolutions of type A Schubert varieties as quiver Grassmannians. In order to explicitly describe this isomorphism, we introduce the notion of a geometrically compatible decomposition for any permutation in the symmetric group \(S_n\). For smooth type A Schubert varieties, we identify a suitable dimension vector such that the corresponding quiver Grassmannian is isomorphic to the Schubert variety. To obtain these isomorphisms, we construct a special quiver with relations and investigate two classes of quiver Grassmannians for this quiver.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
61
审稿时长
6-12 weeks
期刊介绍: Algebras and Representation Theory features carefully refereed papers relating, in its broadest sense, to the structure and representation theory of algebras, including Lie algebras and superalgebras, rings of differential operators, group rings and algebras, C*-algebras and Hopf algebras, with particular emphasis on quantum groups. The journal contains high level, significant and original research papers, as well as expository survey papers written by specialists who present the state-of-the-art of well-defined subjects or subdomains. Occasionally, special issues on specific subjects are published as well, the latter allowing specialists and non-specialists to quickly get acquainted with new developments and topics within the field of rings, algebras and their applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信