{"title":"格尔凡-采特林模块:可达性和计算","authors":"Turner Silverthorne, Ben Webster","doi":"10.1007/s10468-024-10264-y","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we give a more down-to-earth introduction to the connection between Gelfand-Tsetlin modules over <span>\\(\\mathfrak {gl}_n\\)</span> and diagrammatic KLRW algebras and develop some of its consequences. In addition to a new proof of this description of the category Gelfand-Tsetlin modules appearing in earlier work, we show three new results of independent interest: (1) we show that every simple Gelfand-Tsetlin module is a canonical module in the sense of Early, Mazorchuk and Vishnyakova, and characterize when two maximal ideals have isomorphic canonical modules, (2) we show that the dimensions of Gelfand-Tsetlin weight spaces in simple modules can be computed using an appropriate modification of Leclerc’s algorithm for computing dual canonical bases, and (3) we construct a basis of the Verma modules of <span>\\(\\mathfrak {sl}_n\\)</span> which consists of generalized eigenvectors for the Gelfand-Tsetlin subalgebra. Furthermore, we present computations of multiplicities and Gelfand-Kirillov dimensions for all integral Gelfand-Tsetlin modules in ranks 3 and 4; unfortunately, for ranks <span>\\(>4\\)</span>, our computers are not adequate to perform these computations.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Gelfand-Tsetlin Modules: Canonicity and Calculations\",\"authors\":\"Turner Silverthorne, Ben Webster\",\"doi\":\"10.1007/s10468-024-10264-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we give a more down-to-earth introduction to the connection between Gelfand-Tsetlin modules over <span>\\\\(\\\\mathfrak {gl}_n\\\\)</span> and diagrammatic KLRW algebras and develop some of its consequences. In addition to a new proof of this description of the category Gelfand-Tsetlin modules appearing in earlier work, we show three new results of independent interest: (1) we show that every simple Gelfand-Tsetlin module is a canonical module in the sense of Early, Mazorchuk and Vishnyakova, and characterize when two maximal ideals have isomorphic canonical modules, (2) we show that the dimensions of Gelfand-Tsetlin weight spaces in simple modules can be computed using an appropriate modification of Leclerc’s algorithm for computing dual canonical bases, and (3) we construct a basis of the Verma modules of <span>\\\\(\\\\mathfrak {sl}_n\\\\)</span> which consists of generalized eigenvectors for the Gelfand-Tsetlin subalgebra. Furthermore, we present computations of multiplicities and Gelfand-Kirillov dimensions for all integral Gelfand-Tsetlin modules in ranks 3 and 4; unfortunately, for ranks <span>\\\\(>4\\\\)</span>, our computers are not adequate to perform these computations.</p></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-03-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10468-024-10264-y\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10468-024-10264-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Gelfand-Tsetlin Modules: Canonicity and Calculations
In this paper, we give a more down-to-earth introduction to the connection between Gelfand-Tsetlin modules over \(\mathfrak {gl}_n\) and diagrammatic KLRW algebras and develop some of its consequences. In addition to a new proof of this description of the category Gelfand-Tsetlin modules appearing in earlier work, we show three new results of independent interest: (1) we show that every simple Gelfand-Tsetlin module is a canonical module in the sense of Early, Mazorchuk and Vishnyakova, and characterize when two maximal ideals have isomorphic canonical modules, (2) we show that the dimensions of Gelfand-Tsetlin weight spaces in simple modules can be computed using an appropriate modification of Leclerc’s algorithm for computing dual canonical bases, and (3) we construct a basis of the Verma modules of \(\mathfrak {sl}_n\) which consists of generalized eigenvectors for the Gelfand-Tsetlin subalgebra. Furthermore, we present computations of multiplicities and Gelfand-Kirillov dimensions for all integral Gelfand-Tsetlin modules in ranks 3 and 4; unfortunately, for ranks \(>4\), our computers are not adequate to perform these computations.