Birational Maps to Grassmannians, Representations and Poset Polytopes

Pub Date : 2024-05-30 DOI:10.1007/s10468-024-10273-x
Evgeny Feigin
{"title":"Birational Maps to Grassmannians, Representations and Poset Polytopes","authors":"Evgeny Feigin","doi":"10.1007/s10468-024-10273-x","DOIUrl":null,"url":null,"abstract":"<p>We study the closure of the graph of the birational map from a projective space to a Grassmannian. We provide explicit description of the graph closure and compute the fibers of the natural projection to the Grassmannian. We construct embeddings of the graph closure to the projectivizations of certain cyclic representations of a degenerate special linear Lie algebra and study algebraic and combinatorial properties of these representations. In particular, we describe monomial bases, generalizing the FFLV bases. The proof relies on combinatorial properties of a new family of poset polytopes, which are of independent interest. As a consequence we obtain flat toric degenerations of the graph closure studied by Borovik, Sturmfels and Sverrisdóttir.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10468-024-10273-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We study the closure of the graph of the birational map from a projective space to a Grassmannian. We provide explicit description of the graph closure and compute the fibers of the natural projection to the Grassmannian. We construct embeddings of the graph closure to the projectivizations of certain cyclic representations of a degenerate special linear Lie algebra and study algebraic and combinatorial properties of these representations. In particular, we describe monomial bases, generalizing the FFLV bases. The proof relies on combinatorial properties of a new family of poset polytopes, which are of independent interest. As a consequence we obtain flat toric degenerations of the graph closure studied by Borovik, Sturmfels and Sverrisdóttir.

分享
查看原文
通向格拉斯曼、表征和 Poset 多面体的双向映射
我们研究了从投影空间到格拉斯曼的双向图的图闭。我们提供了图封闭的明确描述,并计算了到格拉斯曼的自然投影的纤维。我们构建了图封闭到退化特殊线性李代数某些循环表示的投影化的嵌入,并研究了这些表示的代数和组合性质。特别是,我们描述了概括 FFLV 基的单项式基。证明依赖于一个新的正多面体家族的组合性质,这也是我们的兴趣所在。因此,我们获得了博罗维克、斯图姆费尔斯和斯维里斯多蒂尔所研究的图封闭的平环形退化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信