{"title":"重塑哈兹拉特猜想:移位等价性与梯度莫里塔等价性的关系","authors":"Gene Abrams, Efren Ruiz, Mark Tomforde","doi":"10.1007/s10468-024-10266-w","DOIUrl":null,"url":null,"abstract":"<div><p>Let <i>E</i> and <i>F</i> be finite graphs with no sinks, and <i>k</i> any field. We show that shift equivalence of the adjacency matrices <span>\\(A_E\\)</span> and <span>\\(A_F\\)</span>, together with an additional compatibility condition, implies that the Leavitt path algebras <span>\\(L_k(E)\\)</span> and <span>\\(L_k(F)\\)</span> are graded Morita equivalent. Along the way, we build a new type of <span>\\(L_k(E)\\)</span>–<span>\\(L_k(F)\\)</span>-bimodule (a <i>bridging bimodule</i>), which we use to establish the graded equivalence.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Recasting the Hazrat Conjecture: Relating Shift Equivalence to Graded Morita Equivalence\",\"authors\":\"Gene Abrams, Efren Ruiz, Mark Tomforde\",\"doi\":\"10.1007/s10468-024-10266-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Let <i>E</i> and <i>F</i> be finite graphs with no sinks, and <i>k</i> any field. We show that shift equivalence of the adjacency matrices <span>\\\\(A_E\\\\)</span> and <span>\\\\(A_F\\\\)</span>, together with an additional compatibility condition, implies that the Leavitt path algebras <span>\\\\(L_k(E)\\\\)</span> and <span>\\\\(L_k(F)\\\\)</span> are graded Morita equivalent. Along the way, we build a new type of <span>\\\\(L_k(E)\\\\)</span>–<span>\\\\(L_k(F)\\\\)</span>-bimodule (a <i>bridging bimodule</i>), which we use to establish the graded equivalence.</p></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-04-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10468-024-10266-w\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10468-024-10266-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
让 E 和 F 是没有汇的有限图,k 是任意域。我们证明了邻接矩阵 \(A_E\) 和 \(A_F\) 的移位等价性,再加上一个额外的相容性条件,意味着 Leavitt 路径代数 \(L_k(E)\) 和 \(L_k(F)\) 是分级莫里塔等价的。在这个过程中,我们建立了一种新型的 \(L_k(E)\)-\(L_k(F)\)- 双模块(桥接双模块),我们用它来建立分级等价性。
Recasting the Hazrat Conjecture: Relating Shift Equivalence to Graded Morita Equivalence
Let E and F be finite graphs with no sinks, and k any field. We show that shift equivalence of the adjacency matrices \(A_E\) and \(A_F\), together with an additional compatibility condition, implies that the Leavitt path algebras \(L_k(E)\) and \(L_k(F)\) are graded Morita equivalent. Along the way, we build a new type of \(L_k(E)\)–\(L_k(F)\)-bimodule (a bridging bimodule), which we use to establish the graded equivalence.