Recasting the Hazrat Conjecture: Relating Shift Equivalence to Graded Morita Equivalence

Pub Date : 2024-04-09 DOI:10.1007/s10468-024-10266-w
Gene Abrams, Efren Ruiz, Mark Tomforde
{"title":"Recasting the Hazrat Conjecture: Relating Shift Equivalence to Graded Morita Equivalence","authors":"Gene Abrams,&nbsp;Efren Ruiz,&nbsp;Mark Tomforde","doi":"10.1007/s10468-024-10266-w","DOIUrl":null,"url":null,"abstract":"<div><p>Let <i>E</i> and <i>F</i> be finite graphs with no sinks, and <i>k</i> any field. We show that shift equivalence of the adjacency matrices <span>\\(A_E\\)</span> and <span>\\(A_F\\)</span>, together with an additional compatibility condition, implies that the Leavitt path algebras <span>\\(L_k(E)\\)</span> and <span>\\(L_k(F)\\)</span> are graded Morita equivalent. Along the way, we build a new type of <span>\\(L_k(E)\\)</span>–<span>\\(L_k(F)\\)</span>-bimodule (a <i>bridging bimodule</i>), which we use to establish the graded equivalence.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10468-024-10266-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Let E and F be finite graphs with no sinks, and k any field. We show that shift equivalence of the adjacency matrices \(A_E\) and \(A_F\), together with an additional compatibility condition, implies that the Leavitt path algebras \(L_k(E)\) and \(L_k(F)\) are graded Morita equivalent. Along the way, we build a new type of \(L_k(E)\)\(L_k(F)\)-bimodule (a bridging bimodule), which we use to establish the graded equivalence.

分享
查看原文
重塑哈兹拉特猜想:移位等价性与梯度莫里塔等价性的关系
让 E 和 F 是没有汇的有限图,k 是任意域。我们证明了邻接矩阵 \(A_E\) 和 \(A_F\) 的移位等价性,再加上一个额外的相容性条件,意味着 Leavitt 路径代数 \(L_k(E)\) 和 \(L_k(F)\) 是分级莫里塔等价的。在这个过程中,我们建立了一种新型的 \(L_k(E)\)-\(L_k(F)\)- 双模块(桥接双模块),我们用它来建立分级等价性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信