{"title":"通向格拉斯曼、表征和 Poset 多面体的双向映射","authors":"Evgeny Feigin","doi":"10.1007/s10468-024-10273-x","DOIUrl":null,"url":null,"abstract":"<p>We study the closure of the graph of the birational map from a projective space to a Grassmannian. We provide explicit description of the graph closure and compute the fibers of the natural projection to the Grassmannian. We construct embeddings of the graph closure to the projectivizations of certain cyclic representations of a degenerate special linear Lie algebra and study algebraic and combinatorial properties of these representations. In particular, we describe monomial bases, generalizing the FFLV bases. The proof relies on combinatorial properties of a new family of poset polytopes, which are of independent interest. As a consequence we obtain flat toric degenerations of the graph closure studied by Borovik, Sturmfels and Sverrisdóttir.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Birational Maps to Grassmannians, Representations and Poset Polytopes\",\"authors\":\"Evgeny Feigin\",\"doi\":\"10.1007/s10468-024-10273-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We study the closure of the graph of the birational map from a projective space to a Grassmannian. We provide explicit description of the graph closure and compute the fibers of the natural projection to the Grassmannian. We construct embeddings of the graph closure to the projectivizations of certain cyclic representations of a degenerate special linear Lie algebra and study algebraic and combinatorial properties of these representations. In particular, we describe monomial bases, generalizing the FFLV bases. The proof relies on combinatorial properties of a new family of poset polytopes, which are of independent interest. As a consequence we obtain flat toric degenerations of the graph closure studied by Borovik, Sturmfels and Sverrisdóttir.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-05-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10468-024-10273-x\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10468-024-10273-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Birational Maps to Grassmannians, Representations and Poset Polytopes
We study the closure of the graph of the birational map from a projective space to a Grassmannian. We provide explicit description of the graph closure and compute the fibers of the natural projection to the Grassmannian. We construct embeddings of the graph closure to the projectivizations of certain cyclic representations of a degenerate special linear Lie algebra and study algebraic and combinatorial properties of these representations. In particular, we describe monomial bases, generalizing the FFLV bases. The proof relies on combinatorial properties of a new family of poset polytopes, which are of independent interest. As a consequence we obtain flat toric degenerations of the graph closure studied by Borovik, Sturmfels and Sverrisdóttir.