交映矩阵的几乎共通方案与量子哈密顿还原

Pub Date : 2024-07-17 DOI:10.1007/s10468-024-10275-9
Pallav Goyal
{"title":"交映矩阵的几乎共通方案与量子哈密顿还原","authors":"Pallav Goyal","doi":"10.1007/s10468-024-10275-9","DOIUrl":null,"url":null,"abstract":"<div><p>Losev introduced the scheme <i>X</i> of almost commuting elements (i.e., elements commuting upto a rank one element) of <span>\\(\\mathfrak {g}=\\mathfrak {sp}(V)\\)</span> for a symplectic vector space <i>V</i> and discussed its algebro-geometric properties. We construct a Lagrangian subscheme <span>\\(X^{nil}\\)</span> of <i>X</i> and show that it is a complete intersection of dimension <span>\\(\\text {dim}(\\mathfrak {g})+\\frac{1}{2}\\text {dim}(V)\\)</span> and compute its irreducible onents. We also study the quantum Hamiltonian reduction of the algebra <span>\\(\\mathcal {D}(\\mathfrak {g})\\)</span> of differential operators on the Lie algebra <span>\\(\\mathfrak {g}\\)</span> tensored with the Weyl algebra with respect to the action of the symplectic group, and show that it is isomorphic to the spherical subalgebra of a certain rational Cherednik algebra of Type <i>C</i>. We contruct a category <span>\\(\\mathcal {C}_c\\)</span> of <span>\\(\\mathcal {D}\\)</span>-modules whose characteristic variety is contained in <span>\\(X^{nil}\\)</span> and construct an exact functor from this category to the category <span>\\(\\mathcal {O}\\)</span> of the above rational Cherednik algebra. Simple objects of the category <span>\\(\\mathcal {C}_c\\)</span> are mirabolic analogs of Lusztig’s character sheaves.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10468-024-10275-9.pdf","citationCount":"0","resultStr":"{\"title\":\"Almost Commuting Scheme of Symplectic Matrices and Quantum Hamiltonian Reduction\",\"authors\":\"Pallav Goyal\",\"doi\":\"10.1007/s10468-024-10275-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Losev introduced the scheme <i>X</i> of almost commuting elements (i.e., elements commuting upto a rank one element) of <span>\\\\(\\\\mathfrak {g}=\\\\mathfrak {sp}(V)\\\\)</span> for a symplectic vector space <i>V</i> and discussed its algebro-geometric properties. We construct a Lagrangian subscheme <span>\\\\(X^{nil}\\\\)</span> of <i>X</i> and show that it is a complete intersection of dimension <span>\\\\(\\\\text {dim}(\\\\mathfrak {g})+\\\\frac{1}{2}\\\\text {dim}(V)\\\\)</span> and compute its irreducible onents. We also study the quantum Hamiltonian reduction of the algebra <span>\\\\(\\\\mathcal {D}(\\\\mathfrak {g})\\\\)</span> of differential operators on the Lie algebra <span>\\\\(\\\\mathfrak {g}\\\\)</span> tensored with the Weyl algebra with respect to the action of the symplectic group, and show that it is isomorphic to the spherical subalgebra of a certain rational Cherednik algebra of Type <i>C</i>. We contruct a category <span>\\\\(\\\\mathcal {C}_c\\\\)</span> of <span>\\\\(\\\\mathcal {D}\\\\)</span>-modules whose characteristic variety is contained in <span>\\\\(X^{nil}\\\\)</span> and construct an exact functor from this category to the category <span>\\\\(\\\\mathcal {O}\\\\)</span> of the above rational Cherednik algebra. Simple objects of the category <span>\\\\(\\\\mathcal {C}_c\\\\)</span> are mirabolic analogs of Lusztig’s character sheaves.</p></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10468-024-10275-9.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10468-024-10275-9\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10468-024-10275-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

洛塞夫介绍了交错向量空间 V 的 \(\mathfrak {g}=\mathfrak {sp}(V)\) 的几乎共通元素(即直到一个秩一元素为止共通的元素)的方案 X,并讨论了它的代数几何性质。我们构建了 X 的拉格朗日子集 \(X^{nil}\),并证明它是维数为 \(\text {dim}(\mathfrak {g})+\frac{1}{2}\text {dim}(V)\) 的完全交集,并计算了它的不可还原onents。我们还研究了微分算子的代数(\(\mathcal {D}(\mathfrak {g})\)的量子哈密顿还原,这个代数是关于交点群作用的、用韦尔代数张开的李代数(\(\mathfrak {g}\) tensored with the Weyl algebra),并证明它与 C 型的某个有理切雷尼克代数的球面子代数同构。我们构建了一个其特征种类包含在\(X^{nil}\)中的\(\mathcal {C}_c\)模的范畴\(\mathcal {D}\),并构建了一个从这个范畴到上述有理切雷德尼克代数的范畴\(\mathcal {O}\)的精确函数。范畴 \(\mathcal {C}_c\) 的简单对象是卢兹蒂格特征剪切的蜃楼类似物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Almost Commuting Scheme of Symplectic Matrices and Quantum Hamiltonian Reduction

Losev introduced the scheme X of almost commuting elements (i.e., elements commuting upto a rank one element) of \(\mathfrak {g}=\mathfrak {sp}(V)\) for a symplectic vector space V and discussed its algebro-geometric properties. We construct a Lagrangian subscheme \(X^{nil}\) of X and show that it is a complete intersection of dimension \(\text {dim}(\mathfrak {g})+\frac{1}{2}\text {dim}(V)\) and compute its irreducible onents. We also study the quantum Hamiltonian reduction of the algebra \(\mathcal {D}(\mathfrak {g})\) of differential operators on the Lie algebra \(\mathfrak {g}\) tensored with the Weyl algebra with respect to the action of the symplectic group, and show that it is isomorphic to the spherical subalgebra of a certain rational Cherednik algebra of Type C. We contruct a category \(\mathcal {C}_c\) of \(\mathcal {D}\)-modules whose characteristic variety is contained in \(X^{nil}\) and construct an exact functor from this category to the category \(\mathcal {O}\) of the above rational Cherednik algebra. Simple objects of the category \(\mathcal {C}_c\) are mirabolic analogs of Lusztig’s character sheaves.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信