{"title":"On a Generalized Auslander-Reiten Conjecture","authors":"Souvik Dey, Shinya Kumashiro, Parangama Sarkar","doi":"10.1007/s10468-024-10271-z","DOIUrl":null,"url":null,"abstract":"<div><p>It is well-known that the generalized Auslander-Reiten condition (GARC) and the symmetric Auslander condition (SAC) are equivalent, and (GARC) implies that the Auslander-Reiten condition (ARC). In this paper we explore (SAC) along with the several canonical change of rings <span>\\(R \\rightarrow S\\)</span>. First, we prove the equivalence of (SAC) for <i>R</i> and <i>R</i>/<i>xR</i>, where <i>x</i> is a non-zerodivisor on <i>R</i>, and the equivalence of (SAC) and (SACC) for rings with positive depth, where (SACC) is the symmetric Auslander condition for modules with constant rank. The latter assertion affirmatively answers a question posed by Celikbas and Takahashi. Secondly, for a ring homomorphism <span>\\(R \\rightarrow S\\)</span>, we prove that if <i>S</i> satisfies (SAC) (resp. (ARC)), then <i>R</i> also satisfies (SAC) (resp. (ARC)) if the flat dimension of <i>S</i> over <i>R</i> is finite. We also prove that (SAC) holds for <i>R</i> implies that (SAC) holds for <i>S</i> when <i>R</i> is Gorenstein and <span>\\(S=R/Q^\\ell \\)</span>, where <i>Q</i> is generated by a regular sequence of <i>R</i> and the length of the sequence is at least <span>\\(\\ell \\)</span>. This is a consequence of more general results about Ulrich ideals proved in this paper. Applying these results to determinantal rings and numerical semigroup rings, we provide new classes of rings satisfying (SAC). A relation between (SAC) and an invariant related to the finitistic extension degree is also explored.</p></div>","PeriodicalId":50825,"journal":{"name":"Algebras and Representation Theory","volume":"27 3","pages":"1581 - 1602"},"PeriodicalIF":0.5000,"publicationDate":"2024-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebras and Representation Theory","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10468-024-10271-z","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
It is well-known that the generalized Auslander-Reiten condition (GARC) and the symmetric Auslander condition (SAC) are equivalent, and (GARC) implies that the Auslander-Reiten condition (ARC). In this paper we explore (SAC) along with the several canonical change of rings \(R \rightarrow S\). First, we prove the equivalence of (SAC) for R and R/xR, where x is a non-zerodivisor on R, and the equivalence of (SAC) and (SACC) for rings with positive depth, where (SACC) is the symmetric Auslander condition for modules with constant rank. The latter assertion affirmatively answers a question posed by Celikbas and Takahashi. Secondly, for a ring homomorphism \(R \rightarrow S\), we prove that if S satisfies (SAC) (resp. (ARC)), then R also satisfies (SAC) (resp. (ARC)) if the flat dimension of S over R is finite. We also prove that (SAC) holds for R implies that (SAC) holds for S when R is Gorenstein and \(S=R/Q^\ell \), where Q is generated by a regular sequence of R and the length of the sequence is at least \(\ell \). This is a consequence of more general results about Ulrich ideals proved in this paper. Applying these results to determinantal rings and numerical semigroup rings, we provide new classes of rings satisfying (SAC). A relation between (SAC) and an invariant related to the finitistic extension degree is also explored.
众所周知,广义奥斯兰德-雷顿条件(GARC)和对称奥斯兰德条件(SAC)是等价的,而(GARC)意味着奥斯兰德-雷顿条件(ARC)。在本文中,我们将探讨(SAC)与几种典范变环 \(R\rightarrow S\) 的关系。首先,我们证明了 (SAC) 对于 R 和 R/xR(其中 x 是 R 上的非zerodivisor)的等价性,以及 (SAC) 和 (SACC) 对于具有正深度的环的等价性,其中 (SACC) 是具有恒定秩的模块的对称奥斯兰德条件。后一个断言肯定地回答了 Celikbas 和 Takahashi 提出的一个问题。其次,对于环同态(R),我们证明,如果 S 满足(SAC)(或(ARC)),那么如果 S 在 R 上的平维是有限的,R 也满足(SAC)(或(ARC))。我们还证明,当 R 是 Gorenstein 且 \(S=R/Q^\ell\),其中 Q 由 R 的正则序列生成,且序列的长度至少为 \(\ell \)时,(SAC)对 R 成立意味着(SAC)对 S 成立。这是本文证明的关于乌尔里希理想的更一般结果的结果。把这些结果应用到行列式环和数字半群环中,我们提供了满足(SAC)的新环类。本文还探讨了 (SAC) 与有限扩展度相关不变量之间的关系。
期刊介绍:
Algebras and Representation Theory features carefully refereed papers relating, in its broadest sense, to the structure and representation theory of algebras, including Lie algebras and superalgebras, rings of differential operators, group rings and algebras, C*-algebras and Hopf algebras, with particular emphasis on quantum groups.
The journal contains high level, significant and original research papers, as well as expository survey papers written by specialists who present the state-of-the-art of well-defined subjects or subdomains. Occasionally, special issues on specific subjects are published as well, the latter allowing specialists and non-specialists to quickly get acquainted with new developments and topics within the field of rings, algebras and their applications.