关于广义奥斯兰德-雷滕猜想

Pub Date : 2024-05-17 DOI:10.1007/s10468-024-10271-z
Souvik Dey, Shinya Kumashiro, Parangama Sarkar
{"title":"关于广义奥斯兰德-雷滕猜想","authors":"Souvik Dey,&nbsp;Shinya Kumashiro,&nbsp;Parangama Sarkar","doi":"10.1007/s10468-024-10271-z","DOIUrl":null,"url":null,"abstract":"<div><p>It is well-known that the generalized Auslander-Reiten condition (GARC) and the symmetric Auslander condition (SAC) are equivalent, and (GARC) implies that the Auslander-Reiten condition (ARC). In this paper we explore (SAC) along with the several canonical change of rings <span>\\(R \\rightarrow S\\)</span>. First, we prove the equivalence of (SAC) for <i>R</i> and <i>R</i>/<i>xR</i>, where <i>x</i> is a non-zerodivisor on <i>R</i>, and the equivalence of (SAC) and (SACC) for rings with positive depth, where (SACC) is the symmetric Auslander condition for modules with constant rank. The latter assertion affirmatively answers a question posed by Celikbas and Takahashi. Secondly, for a ring homomorphism <span>\\(R \\rightarrow S\\)</span>, we prove that if <i>S</i> satisfies (SAC) (resp. (ARC)), then <i>R</i> also satisfies (SAC) (resp. (ARC)) if the flat dimension of <i>S</i> over <i>R</i> is finite. We also prove that (SAC) holds for <i>R</i> implies that (SAC) holds for <i>S</i> when <i>R</i> is Gorenstein and <span>\\(S=R/Q^\\ell \\)</span>, where <i>Q</i> is generated by a regular sequence of <i>R</i> and the length of the sequence is at least <span>\\(\\ell \\)</span>. This is a consequence of more general results about Ulrich ideals proved in this paper. Applying these results to determinantal rings and numerical semigroup rings, we provide new classes of rings satisfying (SAC). A relation between (SAC) and an invariant related to the finitistic extension degree is also explored.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On a Generalized Auslander-Reiten Conjecture\",\"authors\":\"Souvik Dey,&nbsp;Shinya Kumashiro,&nbsp;Parangama Sarkar\",\"doi\":\"10.1007/s10468-024-10271-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>It is well-known that the generalized Auslander-Reiten condition (GARC) and the symmetric Auslander condition (SAC) are equivalent, and (GARC) implies that the Auslander-Reiten condition (ARC). In this paper we explore (SAC) along with the several canonical change of rings <span>\\\\(R \\\\rightarrow S\\\\)</span>. First, we prove the equivalence of (SAC) for <i>R</i> and <i>R</i>/<i>xR</i>, where <i>x</i> is a non-zerodivisor on <i>R</i>, and the equivalence of (SAC) and (SACC) for rings with positive depth, where (SACC) is the symmetric Auslander condition for modules with constant rank. The latter assertion affirmatively answers a question posed by Celikbas and Takahashi. Secondly, for a ring homomorphism <span>\\\\(R \\\\rightarrow S\\\\)</span>, we prove that if <i>S</i> satisfies (SAC) (resp. (ARC)), then <i>R</i> also satisfies (SAC) (resp. (ARC)) if the flat dimension of <i>S</i> over <i>R</i> is finite. We also prove that (SAC) holds for <i>R</i> implies that (SAC) holds for <i>S</i> when <i>R</i> is Gorenstein and <span>\\\\(S=R/Q^\\\\ell \\\\)</span>, where <i>Q</i> is generated by a regular sequence of <i>R</i> and the length of the sequence is at least <span>\\\\(\\\\ell \\\\)</span>. This is a consequence of more general results about Ulrich ideals proved in this paper. Applying these results to determinantal rings and numerical semigroup rings, we provide new classes of rings satisfying (SAC). A relation between (SAC) and an invariant related to the finitistic extension degree is also explored.</p></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-05-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10468-024-10271-z\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10468-024-10271-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

众所周知,广义奥斯兰德-雷顿条件(GARC)和对称奥斯兰德条件(SAC)是等价的,而(GARC)意味着奥斯兰德-雷顿条件(ARC)。在本文中,我们将探讨(SAC)与几种典范变环 \(R\rightarrow S\) 的关系。首先,我们证明了 (SAC) 对于 R 和 R/xR(其中 x 是 R 上的非zerodivisor)的等价性,以及 (SAC) 和 (SACC) 对于具有正深度的环的等价性,其中 (SACC) 是具有恒定秩的模块的对称奥斯兰德条件。后一个断言肯定地回答了 Celikbas 和 Takahashi 提出的一个问题。其次,对于环同态(R),我们证明,如果 S 满足(SAC)(或(ARC)),那么如果 S 在 R 上的平维是有限的,R 也满足(SAC)(或(ARC))。我们还证明,当 R 是 Gorenstein 且 \(S=R/Q^\ell\),其中 Q 由 R 的正则序列生成,且序列的长度至少为 \(\ell \)时,(SAC)对 R 成立意味着(SAC)对 S 成立。这是本文证明的关于乌尔里希理想的更一般结果的结果。把这些结果应用到行列式环和数字半群环中,我们提供了满足(SAC)的新环类。本文还探讨了 (SAC) 与有限扩展度相关不变量之间的关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
On a Generalized Auslander-Reiten Conjecture

It is well-known that the generalized Auslander-Reiten condition (GARC) and the symmetric Auslander condition (SAC) are equivalent, and (GARC) implies that the Auslander-Reiten condition (ARC). In this paper we explore (SAC) along with the several canonical change of rings \(R \rightarrow S\). First, we prove the equivalence of (SAC) for R and R/xR, where x is a non-zerodivisor on R, and the equivalence of (SAC) and (SACC) for rings with positive depth, where (SACC) is the symmetric Auslander condition for modules with constant rank. The latter assertion affirmatively answers a question posed by Celikbas and Takahashi. Secondly, for a ring homomorphism \(R \rightarrow S\), we prove that if S satisfies (SAC) (resp. (ARC)), then R also satisfies (SAC) (resp. (ARC)) if the flat dimension of S over R is finite. We also prove that (SAC) holds for R implies that (SAC) holds for S when R is Gorenstein and \(S=R/Q^\ell \), where Q is generated by a regular sequence of R and the length of the sequence is at least \(\ell \). This is a consequence of more general results about Ulrich ideals proved in this paper. Applying these results to determinantal rings and numerical semigroup rings, we provide new classes of rings satisfying (SAC). A relation between (SAC) and an invariant related to the finitistic extension degree is also explored.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信