{"title":"Almost Commuting Scheme of Symplectic Matrices and Quantum Hamiltonian Reduction","authors":"Pallav Goyal","doi":"10.1007/s10468-024-10275-9","DOIUrl":null,"url":null,"abstract":"<div><p>Losev introduced the scheme <i>X</i> of almost commuting elements (i.e., elements commuting upto a rank one element) of <span>\\(\\mathfrak {g}=\\mathfrak {sp}(V)\\)</span> for a symplectic vector space <i>V</i> and discussed its algebro-geometric properties. We construct a Lagrangian subscheme <span>\\(X^{nil}\\)</span> of <i>X</i> and show that it is a complete intersection of dimension <span>\\(\\text {dim}(\\mathfrak {g})+\\frac{1}{2}\\text {dim}(V)\\)</span> and compute its irreducible onents. We also study the quantum Hamiltonian reduction of the algebra <span>\\(\\mathcal {D}(\\mathfrak {g})\\)</span> of differential operators on the Lie algebra <span>\\(\\mathfrak {g}\\)</span> tensored with the Weyl algebra with respect to the action of the symplectic group, and show that it is isomorphic to the spherical subalgebra of a certain rational Cherednik algebra of Type <i>C</i>. We contruct a category <span>\\(\\mathcal {C}_c\\)</span> of <span>\\(\\mathcal {D}\\)</span>-modules whose characteristic variety is contained in <span>\\(X^{nil}\\)</span> and construct an exact functor from this category to the category <span>\\(\\mathcal {O}\\)</span> of the above rational Cherednik algebra. Simple objects of the category <span>\\(\\mathcal {C}_c\\)</span> are mirabolic analogs of Lusztig’s character sheaves.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10468-024-10275-9.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10468-024-10275-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Losev introduced the scheme X of almost commuting elements (i.e., elements commuting upto a rank one element) of \(\mathfrak {g}=\mathfrak {sp}(V)\) for a symplectic vector space V and discussed its algebro-geometric properties. We construct a Lagrangian subscheme \(X^{nil}\) of X and show that it is a complete intersection of dimension \(\text {dim}(\mathfrak {g})+\frac{1}{2}\text {dim}(V)\) and compute its irreducible onents. We also study the quantum Hamiltonian reduction of the algebra \(\mathcal {D}(\mathfrak {g})\) of differential operators on the Lie algebra \(\mathfrak {g}\) tensored with the Weyl algebra with respect to the action of the symplectic group, and show that it is isomorphic to the spherical subalgebra of a certain rational Cherednik algebra of Type C. We contruct a category \(\mathcal {C}_c\) of \(\mathcal {D}\)-modules whose characteristic variety is contained in \(X^{nil}\) and construct an exact functor from this category to the category \(\mathcal {O}\) of the above rational Cherednik algebra. Simple objects of the category \(\mathcal {C}_c\) are mirabolic analogs of Lusztig’s character sheaves.