{"title":"Almost Commuting Scheme of Symplectic Matrices and Quantum Hamiltonian Reduction","authors":"Pallav Goyal","doi":"10.1007/s10468-024-10275-9","DOIUrl":null,"url":null,"abstract":"<div><p>Losev introduced the scheme <i>X</i> of almost commuting elements (i.e., elements commuting upto a rank one element) of <span>\\(\\mathfrak {g}=\\mathfrak {sp}(V)\\)</span> for a symplectic vector space <i>V</i> and discussed its algebro-geometric properties. We construct a Lagrangian subscheme <span>\\(X^{nil}\\)</span> of <i>X</i> and show that it is a complete intersection of dimension <span>\\(\\text {dim}(\\mathfrak {g})+\\frac{1}{2}\\text {dim}(V)\\)</span> and compute its irreducible onents. We also study the quantum Hamiltonian reduction of the algebra <span>\\(\\mathcal {D}(\\mathfrak {g})\\)</span> of differential operators on the Lie algebra <span>\\(\\mathfrak {g}\\)</span> tensored with the Weyl algebra with respect to the action of the symplectic group, and show that it is isomorphic to the spherical subalgebra of a certain rational Cherednik algebra of Type <i>C</i>. We contruct a category <span>\\(\\mathcal {C}_c\\)</span> of <span>\\(\\mathcal {D}\\)</span>-modules whose characteristic variety is contained in <span>\\(X^{nil}\\)</span> and construct an exact functor from this category to the category <span>\\(\\mathcal {O}\\)</span> of the above rational Cherednik algebra. Simple objects of the category <span>\\(\\mathcal {C}_c\\)</span> are mirabolic analogs of Lusztig’s character sheaves.</p></div>","PeriodicalId":50825,"journal":{"name":"Algebras and Representation Theory","volume":"27 4","pages":"1645 - 1669"},"PeriodicalIF":0.5000,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10468-024-10275-9.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebras and Representation Theory","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10468-024-10275-9","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Losev introduced the scheme X of almost commuting elements (i.e., elements commuting upto a rank one element) of \(\mathfrak {g}=\mathfrak {sp}(V)\) for a symplectic vector space V and discussed its algebro-geometric properties. We construct a Lagrangian subscheme \(X^{nil}\) of X and show that it is a complete intersection of dimension \(\text {dim}(\mathfrak {g})+\frac{1}{2}\text {dim}(V)\) and compute its irreducible onents. We also study the quantum Hamiltonian reduction of the algebra \(\mathcal {D}(\mathfrak {g})\) of differential operators on the Lie algebra \(\mathfrak {g}\) tensored with the Weyl algebra with respect to the action of the symplectic group, and show that it is isomorphic to the spherical subalgebra of a certain rational Cherednik algebra of Type C. We contruct a category \(\mathcal {C}_c\) of \(\mathcal {D}\)-modules whose characteristic variety is contained in \(X^{nil}\) and construct an exact functor from this category to the category \(\mathcal {O}\) of the above rational Cherednik algebra. Simple objects of the category \(\mathcal {C}_c\) are mirabolic analogs of Lusztig’s character sheaves.
期刊介绍:
Algebras and Representation Theory features carefully refereed papers relating, in its broadest sense, to the structure and representation theory of algebras, including Lie algebras and superalgebras, rings of differential operators, group rings and algebras, C*-algebras and Hopf algebras, with particular emphasis on quantum groups.
The journal contains high level, significant and original research papers, as well as expository survey papers written by specialists who present the state-of-the-art of well-defined subjects or subdomains. Occasionally, special issues on specific subjects are published as well, the latter allowing specialists and non-specialists to quickly get acquainted with new developments and topics within the field of rings, algebras and their applications.