Galleries for Root Subsystems

IF 0.5 4区 数学 Q3 MATHEMATICS
Vladimir Shchigolev
{"title":"Galleries for Root Subsystems","authors":"Vladimir Shchigolev","doi":"10.1007/s10468-024-10269-7","DOIUrl":null,"url":null,"abstract":"<div><p>We consider the operations of projection and lifting of Weyl chambers to and from a root subsystems of a finite roots system. Extending these operations to labeled galleries, we produce pairs of such galleries that satisfy some common wall crossing properties. These pairs give rise to certain morphisms in the category of Bott-Samelson varieties earlier considered by the author. We prove here that all these morphisms define embeddings of Bott-Samelson varieties (considered in the original interpretation based on compact Lie groups due to Raoul Bott and Hans Samelson) skew invariant with respect to the compact torus. We prove that those embeddings that come from projection and lifting preserve two natural orders on the set of the points fixed by the compact torus. We also consider the application of these embeddings to equivariant cohomology. The operations of projection and lifting can also be applied separately to each segment of a gallery. We describe conditions that allow us to glue together the galleries obtained this way.</p></div>","PeriodicalId":50825,"journal":{"name":"Algebras and Representation Theory","volume":"27 3","pages":"1537 - 1561"},"PeriodicalIF":0.5000,"publicationDate":"2024-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebras and Representation Theory","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10468-024-10269-7","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We consider the operations of projection and lifting of Weyl chambers to and from a root subsystems of a finite roots system. Extending these operations to labeled galleries, we produce pairs of such galleries that satisfy some common wall crossing properties. These pairs give rise to certain morphisms in the category of Bott-Samelson varieties earlier considered by the author. We prove here that all these morphisms define embeddings of Bott-Samelson varieties (considered in the original interpretation based on compact Lie groups due to Raoul Bott and Hans Samelson) skew invariant with respect to the compact torus. We prove that those embeddings that come from projection and lifting preserve two natural orders on the set of the points fixed by the compact torus. We also consider the application of these embeddings to equivariant cohomology. The operations of projection and lifting can also be applied separately to each segment of a gallery. We describe conditions that allow us to glue together the galleries obtained this way.

根子系统图库
我们考虑了从有限根系统的根子系统到韦尔室的投影和提升操作。将这些操作扩展到带标记的画廊,我们就能得到满足某些共同过墙性质的画廊对。这些对产生了作者早先考虑过的博特-萨缪尔森(Bott-Samelson)变体范畴中的某些态。我们在此证明,所有这些变形都定义了博特-萨缪尔森变项(基于拉乌尔-博特和汉斯-萨缪尔森提出的紧凑李群的原始解释)的嵌入,它们相对于紧凑环是偏斜不变的。我们证明,这些来自投影和提升的嵌入保留了紧凑环固定点集合上的两个自然阶。我们还考虑了这些嵌入对等变同调的应用。投影和提升操作也可以分别应用于画廊的每一段。我们将描述一些条件,使我们能够将以这种方式得到的图廊粘合在一起。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
61
审稿时长
6-12 weeks
期刊介绍: Algebras and Representation Theory features carefully refereed papers relating, in its broadest sense, to the structure and representation theory of algebras, including Lie algebras and superalgebras, rings of differential operators, group rings and algebras, C*-algebras and Hopf algebras, with particular emphasis on quantum groups. The journal contains high level, significant and original research papers, as well as expository survey papers written by specialists who present the state-of-the-art of well-defined subjects or subdomains. Occasionally, special issues on specific subjects are published as well, the latter allowing specialists and non-specialists to quickly get acquainted with new developments and topics within the field of rings, algebras and their applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信