{"title":"Galleries for Root Subsystems","authors":"Vladimir Shchigolev","doi":"10.1007/s10468-024-10269-7","DOIUrl":null,"url":null,"abstract":"<div><p>We consider the operations of projection and lifting of Weyl chambers to and from a root subsystems of a finite roots system. Extending these operations to labeled galleries, we produce pairs of such galleries that satisfy some common wall crossing properties. These pairs give rise to certain morphisms in the category of Bott-Samelson varieties earlier considered by the author. We prove here that all these morphisms define embeddings of Bott-Samelson varieties (considered in the original interpretation based on compact Lie groups due to Raoul Bott and Hans Samelson) skew invariant with respect to the compact torus. We prove that those embeddings that come from projection and lifting preserve two natural orders on the set of the points fixed by the compact torus. We also consider the application of these embeddings to equivariant cohomology. The operations of projection and lifting can also be applied separately to each segment of a gallery. We describe conditions that allow us to glue together the galleries obtained this way.</p></div>","PeriodicalId":50825,"journal":{"name":"Algebras and Representation Theory","volume":"27 3","pages":"1537 - 1561"},"PeriodicalIF":0.5000,"publicationDate":"2024-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebras and Representation Theory","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10468-024-10269-7","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
We consider the operations of projection and lifting of Weyl chambers to and from a root subsystems of a finite roots system. Extending these operations to labeled galleries, we produce pairs of such galleries that satisfy some common wall crossing properties. These pairs give rise to certain morphisms in the category of Bott-Samelson varieties earlier considered by the author. We prove here that all these morphisms define embeddings of Bott-Samelson varieties (considered in the original interpretation based on compact Lie groups due to Raoul Bott and Hans Samelson) skew invariant with respect to the compact torus. We prove that those embeddings that come from projection and lifting preserve two natural orders on the set of the points fixed by the compact torus. We also consider the application of these embeddings to equivariant cohomology. The operations of projection and lifting can also be applied separately to each segment of a gallery. We describe conditions that allow us to glue together the galleries obtained this way.
期刊介绍:
Algebras and Representation Theory features carefully refereed papers relating, in its broadest sense, to the structure and representation theory of algebras, including Lie algebras and superalgebras, rings of differential operators, group rings and algebras, C*-algebras and Hopf algebras, with particular emphasis on quantum groups.
The journal contains high level, significant and original research papers, as well as expository survey papers written by specialists who present the state-of-the-art of well-defined subjects or subdomains. Occasionally, special issues on specific subjects are published as well, the latter allowing specialists and non-specialists to quickly get acquainted with new developments and topics within the field of rings, algebras and their applications.