Journal of Combinatorial Theory Series A最新文献

筛选
英文 中文
Young tableau reconstruction via minors 通过未成年人重建幼年台构图
IF 0.9 2区 数学
Journal of Combinatorial Theory Series A Pub Date : 2024-08-26 DOI: 10.1016/j.jcta.2024.105950
William Q. Erickson, Daniel Herden, Jonathan Meddaugh, Mark R. Sepanski, Cordell Hammon, Jasmin Mohn, Indalecio Ruiz-Bolanos
{"title":"Young tableau reconstruction via minors","authors":"William Q. Erickson,&nbsp;Daniel Herden,&nbsp;Jonathan Meddaugh,&nbsp;Mark R. Sepanski,&nbsp;Cordell Hammon,&nbsp;Jasmin Mohn,&nbsp;Indalecio Ruiz-Bolanos","doi":"10.1016/j.jcta.2024.105950","DOIUrl":"10.1016/j.jcta.2024.105950","url":null,"abstract":"<div><p>The tableau reconstruction problem, posed by Monks (2009), asks the following. Starting with a standard Young tableau <em>T</em>, a 1-minor of <em>T</em> is a tableau obtained by first deleting any cell of <em>T</em>, and then performing jeu de taquin slides to fill the resulting gap. This can be iterated to arrive at the set of <em>k</em>-minors of <em>T</em>. The problem is this: given <em>k</em>, what are the values of <em>n</em> such that every tableau of size <em>n</em> can be reconstructed from its set of <em>k</em>-minors? For <span><math><mi>k</mi><mo>=</mo><mn>1</mn></math></span>, the problem was recently solved by Cain and Lehtonen. In this paper, we solve the problem for <span><math><mi>k</mi><mo>=</mo><mn>2</mn></math></span>, proving the sharp lower bound <span><math><mi>n</mi><mo>≥</mo><mn>8</mn></math></span>. In the case of multisets of <em>k</em>-minors, we also give a lower bound for arbitrary <em>k</em>, as a first step toward a sharp bound in the general multiset case.</p></div>","PeriodicalId":50230,"journal":{"name":"Journal of Combinatorial Theory Series A","volume":"209 ","pages":"Article 105950"},"PeriodicalIF":0.9,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S009731652400089X/pdfft?md5=9b63472f7cd5508023664fdfaa81b914&pid=1-s2.0-S009731652400089X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142076889","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Some expansion formulas for q-series and their applications q 系列的一些展开公式及其应用
IF 0.9 2区 数学
Journal of Combinatorial Theory Series A Pub Date : 2024-08-12 DOI: 10.1016/j.jcta.2024.105941
Bing He, Suzhen Wen
{"title":"Some expansion formulas for q-series and their applications","authors":"Bing He,&nbsp;Suzhen Wen","doi":"10.1016/j.jcta.2024.105941","DOIUrl":"10.1016/j.jcta.2024.105941","url":null,"abstract":"<div><p>In this paper, we establish some general expansion formulas for <em>q</em>-series. Three of Liu's identities motivate us to search and find such type of formulas. These expansion formulas include as special cases or limiting cases many <em>q</em>-identities including the <em>q</em>-Gauss summation formula, the <em>q</em>-Pfaff-Saalschütz summation formula, three of Jackson's transformation formulas and Sears' terminating <span><math><mmultiscripts><mrow><mi>ϕ</mi></mrow><mrow><mn>3</mn></mrow><none></none><mprescripts></mprescripts><mrow><mn>4</mn></mrow><none></none></mmultiscripts></math></span> transformation formula. As applications, we provide a new proof of the orthogonality relation for continuous dual <em>q</em>-Hahn polynomials, establish some generating functions for special values of the Dirichlet <em>L</em>-functions and the Hurwitz zeta functions, give extensions of three of Liu's identities, establish an extension of Dilcher's identity, and deduce various double Rogers-Ramanujan type identities.</p></div>","PeriodicalId":50230,"journal":{"name":"Journal of Combinatorial Theory Series A","volume":"209 ","pages":"Article 105941"},"PeriodicalIF":0.9,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0097316524000803/pdfft?md5=d91a5172bf5711eb304237933cd5055a&pid=1-s2.0-S0097316524000803-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141984745","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
r-Euler-Mahonian statistics on permutations 关于排列的r-Euler-Mahonian统计
IF 0.9 2区 数学
Journal of Combinatorial Theory Series A Pub Date : 2024-08-06 DOI: 10.1016/j.jcta.2024.105940
Shao-Hua Liu
{"title":"r-Euler-Mahonian statistics on permutations","authors":"Shao-Hua Liu","doi":"10.1016/j.jcta.2024.105940","DOIUrl":"10.1016/j.jcta.2024.105940","url":null,"abstract":"<div><p>Let <span><math><mi>r</mi><mtext>des</mtext></math></span> and <span><math><mi>r</mi><mtext>exc</mtext></math></span> denote the permutation statistics <em>r</em>-descent number and <em>r</em>-excedance number, respectively. We prove that the pairs of permutation statistics <span><math><mo>(</mo><mi>r</mi><mtext>des</mtext><mo>,</mo><mi>r</mi><mtext>maj</mtext><mo>)</mo></math></span> and <span><math><mo>(</mo><mi>r</mi><mtext>exc</mtext><mo>,</mo><mi>r</mi><mtext>den</mtext><mo>)</mo></math></span> are equidistributed, where <span><math><mi>r</mi><mtext>maj</mtext></math></span> denotes the <em>r</em>-major index defined by Don Rawlings and <span><math><mi>r</mi><mtext>den</mtext></math></span> denotes the <em>r</em>-Denert's statistic defined by Guo-Niu Han. When <span><math><mi>r</mi><mo>=</mo><mn>1</mn></math></span>, this result reduces to the equidistribution of <span><math><mo>(</mo><mtext>des</mtext><mo>,</mo><mtext>maj</mtext><mo>)</mo></math></span> and <span><math><mo>(</mo><mtext>exc</mtext><mo>,</mo><mtext>den</mtext><mo>)</mo></math></span>, which was conjectured by Denert in 1990 and proved that same year by Foata and Zeilberger. We call a pair of permutation statistics that is equidistributed with <span><math><mo>(</mo><mi>r</mi><mtext>des</mtext><mo>,</mo><mi>r</mi><mtext>maj</mtext><mo>)</mo></math></span> and <span><math><mo>(</mo><mi>r</mi><mtext>exc</mtext><mo>,</mo><mi>r</mi><mtext>den</mtext><mo>)</mo></math></span> an <em>r</em>-Euler-Mahonian statistic, which reduces to the classical Euler-Mahonian statistic when <span><math><mi>r</mi><mo>=</mo><mn>1</mn></math></span>.</p><p>We then introduce the notions of <em>r</em>-level descent number, <em>r</em>-level excedance number, <em>r</em>-level major index, and <em>r</em>-level Denert's statistic, denoted by <span><math><msub><mrow><mtext>des</mtext></mrow><mrow><mi>r</mi></mrow></msub><mo>,</mo><msub><mrow><mtext>exc</mtext></mrow><mrow><mi>r</mi></mrow></msub><mo>,</mo><msub><mrow><mtext>maj</mtext></mrow><mrow><mi>r</mi></mrow></msub></math></span>, and <span><math><msub><mrow><mtext>den</mtext></mrow><mrow><mi>r</mi></mrow></msub></math></span>, respectively. We prove that <span><math><mo>(</mo><msub><mrow><mtext>des</mtext></mrow><mrow><mi>r</mi></mrow></msub><mo>,</mo><msub><mrow><mtext>maj</mtext></mrow><mrow><mi>r</mi></mrow></msub><mo>)</mo></math></span> is <em>r</em>-Euler-Mahonian and conjecture that <span><math><mo>(</mo><msub><mrow><mtext>exc</mtext></mrow><mrow><mi>r</mi></mrow></msub><mo>,</mo><msub><mrow><mtext>den</mtext></mrow><mrow><mi>r</mi></mrow></msub><mo>)</mo></math></span> is <em>r</em>-Euler-Mahonian. Furthermore, we give an extension of the above result and conjecture.</p></div>","PeriodicalId":50230,"journal":{"name":"Journal of Combinatorial Theory Series A","volume":"208 ","pages":"Article 105940"},"PeriodicalIF":0.9,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141962518","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The q-Onsager algebra and the quantum torus q-Onsager 代数和量子环
IF 0.9 2区 数学
Journal of Combinatorial Theory Series A Pub Date : 2024-08-02 DOI: 10.1016/j.jcta.2024.105939
Owen Goff
{"title":"The q-Onsager algebra and the quantum torus","authors":"Owen Goff","doi":"10.1016/j.jcta.2024.105939","DOIUrl":"10.1016/j.jcta.2024.105939","url":null,"abstract":"<div><p>The <em>q</em>-Onsager algebra, denoted <span><math><msub><mrow><mi>O</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span>, is defined by two generators <span><math><msub><mrow><mi>W</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>,</mo><msub><mrow><mi>W</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> and two relations called the <em>q</em>-Dolan-Grady relations. Recently, Terwilliger introduced some elements of <span><math><msub><mrow><mi>O</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span>, said to be alternating. These elements are denoted<span><span><span><math><msubsup><mrow><mo>{</mo><msub><mrow><mi>W</mi></mrow><mrow><mo>−</mo><mi>k</mi></mrow></msub><mo>}</mo></mrow><mrow><mi>k</mi><mo>=</mo><mn>0</mn></mrow><mrow><mo>∞</mo></mrow></msubsup><mo>,</mo><mspace></mspace><msubsup><mrow><mo>{</mo><msub><mrow><mi>W</mi></mrow><mrow><mi>k</mi><mo>+</mo><mn>1</mn></mrow></msub><mo>}</mo></mrow><mrow><mi>k</mi><mo>=</mo><mn>0</mn></mrow><mrow><mo>∞</mo></mrow></msubsup><mo>,</mo><mspace></mspace><msubsup><mrow><mo>{</mo><msub><mrow><mi>G</mi></mrow><mrow><mi>k</mi><mo>+</mo><mn>1</mn></mrow></msub><mo>}</mo></mrow><mrow><mi>k</mi><mo>=</mo><mn>0</mn></mrow><mrow><mo>∞</mo></mrow></msubsup><mo>,</mo><mspace></mspace><msubsup><mrow><mo>{</mo><msub><mrow><mover><mrow><mi>G</mi></mrow><mrow><mo>˜</mo></mrow></mover></mrow><mrow><mi>k</mi><mo>+</mo><mn>1</mn></mrow></msub><mo>}</mo></mrow><mrow><mi>k</mi><mo>=</mo><mn>0</mn></mrow><mrow><mo>∞</mo></mrow></msubsup><mo>.</mo></math></span></span></span></p><p>The alternating elements of <span><math><msub><mrow><mi>O</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span> are defined recursively. By construction, they are polynomials in <span><math><msub><mrow><mi>W</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> and <span><math><msub><mrow><mi>W</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span>. It is currently unknown how to express these polynomials in closed form.</p><p>In this paper, we consider an algebra <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span>, called the quantum torus. We present a basis for <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span> and define an algebra homomorphism <span><math><mi>p</mi><mo>:</mo><msub><mrow><mi>O</mi></mrow><mrow><mi>q</mi></mrow></msub><mo>↦</mo><msub><mrow><mi>T</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span>. In our main result, we express the <em>p</em>-images of the alternating elements of <span><math><msub><mrow><mi>O</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span> in the basis for <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span>. These expressions are in a closed form that we find attractive.</p></div>","PeriodicalId":50230,"journal":{"name":"Journal of Combinatorial Theory Series A","volume":"208 ","pages":"Article 105939"},"PeriodicalIF":0.9,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141961569","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An infinite family of hyperovals of Q+(5,q), q even Q+(5,q)的一个无穷双峰族,q偶数
IF 0.9 2区 数学
Journal of Combinatorial Theory Series A Pub Date : 2024-08-01 DOI: 10.1016/j.jcta.2024.105938
Bart De Bruyn
{"title":"An infinite family of hyperovals of Q+(5,q), q even","authors":"Bart De Bruyn","doi":"10.1016/j.jcta.2024.105938","DOIUrl":"10.1016/j.jcta.2024.105938","url":null,"abstract":"<div><p>We construct an infinite family of hyperovals on the Klein quadric <span><math><msup><mrow><mi>Q</mi></mrow><mrow><mo>+</mo></mrow></msup><mo>(</mo><mn>5</mn><mo>,</mo><mi>q</mi><mo>)</mo></math></span>, <em>q</em> even. The construction makes use of ovoids of the symplectic generalized quadrangle <span><math><mi>W</mi><mo>(</mo><mi>q</mi><mo>)</mo></math></span> that is associated with an elliptic quadric which arises as solid intersection with <span><math><msup><mrow><mi>Q</mi></mrow><mrow><mo>+</mo></mrow></msup><mo>(</mo><mn>5</mn><mo>,</mo><mi>q</mi><mo>)</mo></math></span>. We also solve the isomorphism problem: we determine necessary and sufficient conditions for two hyperovals arising from the construction to be isomorphic.</p></div>","PeriodicalId":50230,"journal":{"name":"Journal of Combinatorial Theory Series A","volume":"208 ","pages":"Article 105938"},"PeriodicalIF":0.9,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141961570","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A proof of the Etzion-Silberstein conjecture for monotone and MDS-constructible Ferrers diagrams 单调和 MDS-constructible 费勒斯图的 Etzion-Silberstein 猜想证明
IF 0.9 2区 数学
Journal of Combinatorial Theory Series A Pub Date : 2024-07-24 DOI: 10.1016/j.jcta.2024.105937
Alessandro Neri , Mima Stanojkovski
{"title":"A proof of the Etzion-Silberstein conjecture for monotone and MDS-constructible Ferrers diagrams","authors":"Alessandro Neri ,&nbsp;Mima Stanojkovski","doi":"10.1016/j.jcta.2024.105937","DOIUrl":"10.1016/j.jcta.2024.105937","url":null,"abstract":"<div><p>Ferrers diagram rank-metric codes were introduced by Etzion and Silberstein in 2009. In their work, they proposed a conjecture on the largest dimension of a space of matrices over a finite field whose nonzero elements are supported on a given Ferrers diagram and all have rank lower bounded by a fixed positive integer <em>d</em>. Since stated, the Etzion-Silberstein conjecture has been verified in a number of cases, often requiring additional constraints on the field size or on the minimum rank <em>d</em> in dependence of the corresponding Ferrers diagram. As of today, this conjecture still remains widely open. Using modular methods, we give a constructive proof of the Etzion-Silberstein conjecture for the class of strictly monotone Ferrers diagrams, which does not depend on the minimum rank <em>d</em> and holds over every finite field. In addition, we leverage on the last result to also prove the conjecture for the class of MDS-constructible Ferrers diagrams, without requiring any restriction on the field size.</p></div>","PeriodicalId":50230,"journal":{"name":"Journal of Combinatorial Theory Series A","volume":"208 ","pages":"Article 105937"},"PeriodicalIF":0.9,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0097316524000761/pdfft?md5=ed8c99d564a9618858457562d36801f1&pid=1-s2.0-S0097316524000761-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141951609","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
New string attractor-based complexities for infinite words 基于新字符串吸引子的无限词复杂性
IF 0.9 2区 数学
Journal of Combinatorial Theory Series A Pub Date : 2024-07-18 DOI: 10.1016/j.jcta.2024.105936
Julien Cassaigne , France Gheeraert , Antonio Restivo , Giuseppe Romana , Marinella Sciortino , Manon Stipulanti
{"title":"New string attractor-based complexities for infinite words","authors":"Julien Cassaigne ,&nbsp;France Gheeraert ,&nbsp;Antonio Restivo ,&nbsp;Giuseppe Romana ,&nbsp;Marinella Sciortino ,&nbsp;Manon Stipulanti","doi":"10.1016/j.jcta.2024.105936","DOIUrl":"10.1016/j.jcta.2024.105936","url":null,"abstract":"<div><p>A <em>string attractor</em> is a set of positions in a word such that each distinct factor has an occurrence crossing a position from the set. This definition comes from the data compression field, where the size <span><math><msup><mrow><mi>γ</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span> of a smallest string attractor represents a lower bound for the output size of a large family of string compressors exploiting repetitions in words, including BWT-based and LZ-based compressors. For finite words, the combinatorial properties of string attractors have been studied in 2021 by Mantaci et al.. Later, Schaeffer and Shallit introduced the <em>string attractor profile function</em>, a complexity function that evaluates for each <span><math><mi>n</mi><mo>&gt;</mo><mn>0</mn></math></span> the size <span><math><msup><mrow><mi>γ</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span> of the length-<em>n</em> prefix of a one-sided infinite word.</p><p>A natural development of the research on the topic is to link string attractors with other classical notions of repetitiveness in combinatorics on words. Our contribution in this sense is threefold. First, we explore the relation between the string attractor profile function and other well-known combinatorial complexity functions in the context of infinite words, such as the factor complexity and the property of recurrence. Moreover, we study its asymptotic growth in the case of purely morphic words and obtain a complete description in the binary case. Second, we introduce two new string attractor-based complexity functions, in which the structure and the distribution of positions in a string attractor are taken into account, and we study their combinatorial properties. We also show that these measures provide a finer classification of some infinite families of words, namely the Sturmian and quasi-Sturmian words. Third, we explicitly give the three complexities for some specific morphic words called <em>k</em>-bonacci words.</p><p>A preliminary version of some results presented in this paper can be found in [Restivo, Romana, Sciortino, <em>String Attractors and Infinite Words</em>, LATIN 2022].</p></div>","PeriodicalId":50230,"journal":{"name":"Journal of Combinatorial Theory Series A","volume":"208 ","pages":"Article 105936"},"PeriodicalIF":0.9,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S009731652400075X/pdfft?md5=0182f56d4d92ee1616cf2c224e889d2f&pid=1-s2.0-S009731652400075X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141638481","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cluster braid groups of Coxeter-Dynkin diagrams Coxeter-Dynkin 图的簇辫群
IF 0.9 2区 数学
Journal of Combinatorial Theory Series A Pub Date : 2024-07-10 DOI: 10.1016/j.jcta.2024.105935
Zhe Han , Ping He , Yu Qiu
{"title":"Cluster braid groups of Coxeter-Dynkin diagrams","authors":"Zhe Han ,&nbsp;Ping He ,&nbsp;Yu Qiu","doi":"10.1016/j.jcta.2024.105935","DOIUrl":"https://doi.org/10.1016/j.jcta.2024.105935","url":null,"abstract":"<div><p>Cluster exchange groupoids are introduced by King-Qiu as an enhancement of cluster exchange graphs to study stability conditions and quadratic differentials. In this paper, we introduce the cluster exchange groupoid for any finite Coxeter-Dynkin diagram Δ and show that its fundamental group is isomorphic to the corresponding braid group associated with Δ.</p></div>","PeriodicalId":50230,"journal":{"name":"Journal of Combinatorial Theory Series A","volume":"208 ","pages":"Article 105935"},"PeriodicalIF":0.9,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141582036","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Restricted bargraphs and unimodal compositions 受限条形图和单模态组合
IF 0.9 2区 数学
Journal of Combinatorial Theory Series A Pub Date : 2024-07-05 DOI: 10.1016/j.jcta.2024.105934
Rigoberto Flórez , José L. Ramírez , Diego Villamizar
{"title":"Restricted bargraphs and unimodal compositions","authors":"Rigoberto Flórez ,&nbsp;José L. Ramírez ,&nbsp;Diego Villamizar","doi":"10.1016/j.jcta.2024.105934","DOIUrl":"https://doi.org/10.1016/j.jcta.2024.105934","url":null,"abstract":"<div><p>In this paper, we present a study on <em>polyominoes</em>, which are polygons created by connecting unit squares along their edges. Specifically, we focus on a related concept called a <em>bargraph</em>, which is a path on a lattice in <span><math><msub><mrow><mi>Z</mi></mrow><mrow><mo>≥</mo><mn>0</mn></mrow></msub><mo>×</mo><msub><mrow><mi>Z</mi></mrow><mrow><mo>≥</mo><mn>0</mn></mrow></msub></math></span> traced along the boundaries of a column convex polyomino where the lower edge is on the <em>x</em>-axis. To explore new variations of bargraphs, we introduce the notion of <em>non-decreasing bargraphs</em>, which incorporate an additional restriction concerning the valleys within the path. We establish intriguing connections between these novel objects and unimodal compositions. To facilitate our analysis, we employ generating functions, including <em>q</em>-series, as well as various closed formulas. These tools enable us to enumerate the different types of bargraphs based on their semi-perimeter, area, and the number of peaks. Furthermore, we provide combinatorial justifications for some of the derived closed formulas.</p></div>","PeriodicalId":50230,"journal":{"name":"Journal of Combinatorial Theory Series A","volume":"208 ","pages":"Article 105934"},"PeriodicalIF":0.9,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0097316524000736/pdfft?md5=f5366b9dc5560c0148e0644514e1990d&pid=1-s2.0-S0097316524000736-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141541064","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Positivity and tails of pentagonal number series 五角数列的正数和尾数
IF 0.9 2区 数学
Journal of Combinatorial Theory Series A Pub Date : 2024-07-04 DOI: 10.1016/j.jcta.2024.105933
Nian Hong Zhou
{"title":"Positivity and tails of pentagonal number series","authors":"Nian Hong Zhou","doi":"10.1016/j.jcta.2024.105933","DOIUrl":"https://doi.org/10.1016/j.jcta.2024.105933","url":null,"abstract":"<div><p>In this paper, we refine a result of Andrews and Merca on truncated pentagonal number series. Subsequently, we establish some positivity results involving Andrews–Gordon–Bressoud identities and <em>d</em>-regular partitions. In particular, we prove several conjectures of Merca and Krattenthaler–Merca–Radu on truncated pentagonal number series.</p></div>","PeriodicalId":50230,"journal":{"name":"Journal of Combinatorial Theory Series A","volume":"208 ","pages":"Article 105933"},"PeriodicalIF":0.9,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141541065","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信