Yanru Chen , Houshan Fu , Suijie Wang , Jinxing Yang
{"title":"Level of regions for deformed braid arrangements","authors":"Yanru Chen , Houshan Fu , Suijie Wang , Jinxing Yang","doi":"10.1016/j.jcta.2025.106077","DOIUrl":null,"url":null,"abstract":"<div><div>This paper primarily investigates a specific type of deformation of the braid arrangement in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span>, denoted by <span><math><msubsup><mrow><mi>A</mi></mrow><mrow><mi>n</mi></mrow><mrow><mi>A</mi></mrow></msubsup></math></span>. Let <span><math><msub><mrow><mi>r</mi></mrow><mrow><mi>l</mi></mrow></msub><mo>(</mo><msubsup><mrow><mi>A</mi></mrow><mrow><mi>n</mi></mrow><mrow><mi>A</mi></mrow></msubsup><mo>)</mo></math></span> be the number of regions of level <em>l</em> in <span><math><msubsup><mrow><mi>A</mi></mrow><mrow><mi>n</mi></mrow><mrow><mi>A</mi></mrow></msubsup></math></span> and <span><math><msub><mrow><mi>R</mi></mrow><mrow><mi>l</mi></mrow></msub><mo>(</mo><mi>A</mi><mo>;</mo><mi>x</mi><mo>)</mo></math></span> the corresponding exponential generating function. Using the weighted digraph model introduced by Hetyei, we establish a bijection between regions of level <em>l</em> in <span><math><msubsup><mrow><mi>A</mi></mrow><mrow><mi>n</mi></mrow><mrow><mi>A</mi></mrow></msubsup></math></span> and valid <em>m</em>-acyclic weighted digraphs on the vertex set <span><math><mo>[</mo><mi>n</mi><mo>]</mo></math></span> with exactly <em>l</em> strong components. Based on this bijection, we obtain that the sequence <span><math><msub><mrow><mi>R</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>(</mo><mi>A</mi><mo>;</mo><mi>x</mi><mo>)</mo><mo>,</mo><msub><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>(</mo><mi>A</mi><mo>;</mo><mi>x</mi><mo>)</mo><mo>,</mo><mo>⋯</mo></math></span> is of binomial type. In addition, the values <span><math><msub><mrow><mi>r</mi></mrow><mrow><mi>l</mi></mrow></msub><mo>(</mo><msubsup><mrow><mi>A</mi></mrow><mrow><mi>n</mi></mrow><mrow><mi>A</mi></mrow></msubsup><mo>)</mo></math></span> provide a combinatorial interpretation for the coefficients when the characteristic polynomial of <span><math><msubsup><mrow><mi>A</mi></mrow><mrow><mi>n</mi></mrow><mrow><mi>A</mi></mrow></msubsup></math></span> is expanded in terms of <span><math><mo>(</mo><mtable><mtr><mtd><mi>t</mi></mtd></mtr><mtr><mtd><mi>l</mi></mtd></mtr></mtable><mo>)</mo></math></span>. In particular, if <span><math><mi>n</mi><mo>≥</mo><mn>2</mn></math></span> and <span><math><mi>A</mi><mo>=</mo><mo>[</mo><mo>−</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo>]</mo><mo>∩</mo><mi>Z</mi></math></span> for non-negative integers <em>a</em> and <em>b</em> with <span><math><mi>b</mi><mo>−</mo><mi>a</mi><mo>≥</mo><mi>n</mi><mo>−</mo><mn>1</mn></math></span>, we show that the characteristic polynomial of <span><math><msubsup><mrow><mi>A</mi></mrow><mrow><mi>n</mi></mrow><mrow><mi>A</mi></mrow></msubsup></math></span> has a single real root 0 of multiplicity one when <em>n</em> is odd, and has one more real root <span><math><mfrac><mrow><mi>n</mi><mo>(</mo><mi>a</mi><mo>+</mo><mi>b</mi><mo>+</mo><mn>1</mn><mo>)</mo></mrow><mrow><mn>2</mn></mrow></mfrac></math></span> of multiplicity one when <em>n</em> is even.</div></div>","PeriodicalId":50230,"journal":{"name":"Journal of Combinatorial Theory Series A","volume":"217 ","pages":"Article 106077"},"PeriodicalIF":1.2000,"publicationDate":"2025-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Theory Series A","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S009731652500072X","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
This paper primarily investigates a specific type of deformation of the braid arrangement in , denoted by . Let be the number of regions of level l in and the corresponding exponential generating function. Using the weighted digraph model introduced by Hetyei, we establish a bijection between regions of level l in and valid m-acyclic weighted digraphs on the vertex set with exactly l strong components. Based on this bijection, we obtain that the sequence is of binomial type. In addition, the values provide a combinatorial interpretation for the coefficients when the characteristic polynomial of is expanded in terms of . In particular, if and for non-negative integers a and b with , we show that the characteristic polynomial of has a single real root 0 of multiplicity one when n is odd, and has one more real root of multiplicity one when n is even.
期刊介绍:
The Journal of Combinatorial Theory publishes original mathematical research concerned with theoretical and physical aspects of the study of finite and discrete structures in all branches of science. Series A is concerned primarily with structures, designs, and applications of combinatorics and is a valuable tool for mathematicians and computer scientists.