Vertex-transitive graphs with small motion and transitive permutation groups with small minimal degree

IF 1.2 2区 数学 Q2 MATHEMATICS
Antonio Montero , Primož Potočnik
{"title":"Vertex-transitive graphs with small motion and transitive permutation groups with small minimal degree","authors":"Antonio Montero ,&nbsp;Primož Potočnik","doi":"10.1016/j.jcta.2025.106065","DOIUrl":null,"url":null,"abstract":"<div><div>The motion of a graph is the minimum number of vertices that are moved by a non-trivial automorphism. Equivalently, it can be defined as the minimal degree of its automorphism group (as a permutation group on the vertices). In this paper, we develop some results on permutation groups (primitive and imprimitive) with small minimal degree. As a consequence of such results, we classify vertex-transitive graphs whose motion is 4 or a prime number.</div></div>","PeriodicalId":50230,"journal":{"name":"Journal of Combinatorial Theory Series A","volume":"216 ","pages":"Article 106065"},"PeriodicalIF":1.2000,"publicationDate":"2025-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Theory Series A","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0097316525000603","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

The motion of a graph is the minimum number of vertices that are moved by a non-trivial automorphism. Equivalently, it can be defined as the minimal degree of its automorphism group (as a permutation group on the vertices). In this paper, we develop some results on permutation groups (primitive and imprimitive) with small minimal degree. As a consequence of such results, we classify vertex-transitive graphs whose motion is 4 or a prime number.
小运动顶点传递图与小最小度传递置换群
图的运动是由非平凡自同构移动的顶点的最小数量。等价地,它可以被定义为它的自同构群的最小度(作为顶点上的置换群)。本文给出了小极小度置换群(原群和非原群)的一些结果。根据这些结果,我们对运动为4或素数的顶点传递图进行了分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.90
自引率
9.10%
发文量
94
审稿时长
12 months
期刊介绍: The Journal of Combinatorial Theory publishes original mathematical research concerned with theoretical and physical aspects of the study of finite and discrete structures in all branches of science. Series A is concerned primarily with structures, designs, and applications of combinatorics and is a valuable tool for mathematicians and computer scientists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信