Harmonic higher and extended weight enumerators

IF 0.9 2区 数学 Q2 MATHEMATICS
Thomas Britz , Himadri Shekhar Chakraborty , Tsuyoshi Miezaki
{"title":"Harmonic higher and extended weight enumerators","authors":"Thomas Britz ,&nbsp;Himadri Shekhar Chakraborty ,&nbsp;Tsuyoshi Miezaki","doi":"10.1016/j.jcta.2025.106090","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we present the harmonic generalizations of well-known polynomials of codes over finite fields, namely the higher weight enumerators and the extended weight enumerators, and we derive the correspondences between these weight enumerators. Moreover, we present the harmonic generalization of Greene's Theorem for the higher (resp. extended) weight enumerators. As an application of this Greene's-type theorem, we provide the MacWilliams-type identity for harmonic higher weight enumerators of codes over finite fields. Finally, we use this new identity to give a new proof of the Assmus-Mattson Theorem for subcode supports of linear codes over finite fields using harmonic higher weight enumerators.</div></div>","PeriodicalId":50230,"journal":{"name":"Journal of Combinatorial Theory Series A","volume":"217 ","pages":"Article 106090"},"PeriodicalIF":0.9000,"publicationDate":"2025-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Theory Series A","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0097316525000858","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we present the harmonic generalizations of well-known polynomials of codes over finite fields, namely the higher weight enumerators and the extended weight enumerators, and we derive the correspondences between these weight enumerators. Moreover, we present the harmonic generalization of Greene's Theorem for the higher (resp. extended) weight enumerators. As an application of this Greene's-type theorem, we provide the MacWilliams-type identity for harmonic higher weight enumerators of codes over finite fields. Finally, we use this new identity to give a new proof of the Assmus-Mattson Theorem for subcode supports of linear codes over finite fields using harmonic higher weight enumerators.
谐波高权重和扩展权重枚举数
本文给出了有限域上众所周知的码多项式的调和推广,即高权枚举数和扩展权枚举数,并推导了这些权枚举数之间的对应关系。此外,我们给出了格林定理在高阶方程上的调和推广。扩展)权重枚举数。作为Greene型定理的一个应用,我们给出了有限域上码的调和高权枚举数的macwilliams型恒等式。最后,我们利用这个新恒等式给出了有限域上线性码的子码支持的Assmus-Mattson定理的一个新的证明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.90
自引率
9.10%
发文量
94
审稿时长
12 months
期刊介绍: The Journal of Combinatorial Theory publishes original mathematical research concerned with theoretical and physical aspects of the study of finite and discrete structures in all branches of science. Series A is concerned primarily with structures, designs, and applications of combinatorics and is a valuable tool for mathematicians and computer scientists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信