Eiichi Bannai , Hirotake Kurihara , Da Zhao , Yan Zhu
{"title":"Multivariate P- and/or Q-polynomial association schemes","authors":"Eiichi Bannai , Hirotake Kurihara , Da Zhao , Yan Zhu","doi":"10.1016/j.jcta.2025.106025","DOIUrl":"10.1016/j.jcta.2025.106025","url":null,"abstract":"<div><div>The classification problem of <em>P</em>- and <em>Q</em>-polynomial association schemes has been one of the central problems in algebraic combinatorics. Generalizing the concept of <em>P</em>- and <em>Q</em>-polynomial association schemes to multivariate cases, namely to consider higher rank <em>P</em>- and <em>Q</em>-polynomial association schemes, has been tried by some authors, but it seems that so far there were neither very well-established definitions nor results. Very recently, Bernard, Crampé, d'Andecy, Vinet, and Zaimi <span><span>[4]</span></span>, defined bivariate <em>P</em>-polynomial association schemes, as well as bivariate <em>Q</em>-polynomial association schemes. In this paper, we study these concepts and propose a new modified definition concerning a general monomial order, which is more general and more natural and also easy to handle. We prove that there are many interesting families of examples of multivariate <em>P</em>- and/or <em>Q</em>-polynomial association schemes.</div></div>","PeriodicalId":50230,"journal":{"name":"Journal of Combinatorial Theory Series A","volume":"213 ","pages":"Article 106025"},"PeriodicalIF":0.9,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143510697","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"On de Bruijn rings and families of almost perfect maps","authors":"Peer Stelldinger","doi":"10.1016/j.jcta.2025.106030","DOIUrl":"10.1016/j.jcta.2025.106030","url":null,"abstract":"<div><div>De Bruijn tori, or perfect maps, are two-dimensional periodic arrays of letters from a finite alphabet, where each possible pattern of shape <span><math><mo>(</mo><mi>m</mi><mo>,</mo><mi>n</mi><mo>)</mo></math></span> appears exactly once in a single period. While the existence of certain de Bruijn tori, such as square tori with odd <span><math><mi>m</mi><mo>=</mo><mi>n</mi><mo>∈</mo><mo>{</mo><mn>3</mn><mo>,</mo><mn>5</mn><mo>,</mo><mn>7</mn><mo>}</mo></math></span> and even alphabet sizes, remains unresolved, sub-perfect maps are often sufficient in applications like positional coding. These maps capture a large number of patterns, with each appearing at most once. While previous methods for generating such sub-perfect maps cover only a fraction of the possible patterns, we present a construction method for generating almost perfect maps for arbitrary pattern shapes and arbitrary non-prime alphabet sizes, including the above mentioned square tori with odd <span><math><mi>m</mi><mo>=</mo><mi>n</mi><mo>∈</mo><mo>{</mo><mn>3</mn><mo>,</mo><mn>5</mn><mo>,</mo><mn>7</mn><mo>}</mo></math></span> as long that the alphabet size is non-prime. This is achieved through the introduction of de Bruijn rings, a minimal-height sub-perfect map and a formalization of the concept of families of almost perfect maps. The generated sub-perfect maps are easily decodable which makes them perfectly suitable for positional coding applications.</div></div>","PeriodicalId":50230,"journal":{"name":"Journal of Combinatorial Theory Series A","volume":"214 ","pages":"Article 106030"},"PeriodicalIF":0.9,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143510240","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"An imperceptible connection between the Clebsch–Gordan coefficients of Uq(sl2) and the Terwilliger algebras of Grassmann graphs","authors":"Hau-Wen Huang","doi":"10.1016/j.jcta.2025.106028","DOIUrl":"10.1016/j.jcta.2025.106028","url":null,"abstract":"<div><div>The Clebsch–Gordan coefficients of <span><math><mi>U</mi><mo>(</mo><msub><mrow><mi>sl</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></math></span> are expressible in terms of Hahn polynomials. The phenomenon can be explained by an algebra homomorphism ♮ from the universal Hahn algebra <span><math><mi>H</mi></math></span> into <span><math><mi>U</mi><mo>(</mo><msub><mrow><mi>sl</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo><mo>⊗</mo><mi>U</mi><mo>(</mo><msub><mrow><mi>sl</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></math></span>. Let Ω denote a finite set of size <em>D</em> and <span><math><msup><mrow><mn>2</mn></mrow><mrow><mi>Ω</mi></mrow></msup></math></span> denote the power set of Ω. It is generally known that <span><math><msup><mrow><mi>C</mi></mrow><mrow><msup><mrow><mn>2</mn></mrow><mrow><mi>Ω</mi></mrow></msup></mrow></msup></math></span> supports a <span><math><mi>U</mi><mo>(</mo><msub><mrow><mi>sl</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></math></span>-module. Let <em>k</em> denote an integer with <span><math><mn>0</mn><mo>≤</mo><mi>k</mi><mo>≤</mo><mi>D</mi></math></span> and fix a <em>k</em>-element subset <span><math><msub><mrow><mi>x</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> of Ω. By identifying <span><math><msup><mrow><mi>C</mi></mrow><mrow><msup><mrow><mn>2</mn></mrow><mrow><mi>Ω</mi></mrow></msup></mrow></msup></math></span> with <span><math><msup><mrow><mi>C</mi></mrow><mrow><msup><mrow><mn>2</mn></mrow><mrow><mi>Ω</mi><mo>∖</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>0</mn></mrow></msub></mrow></msup></mrow></msup><mo>⊗</mo><msup><mrow><mi>C</mi></mrow><mrow><msup><mrow><mn>2</mn></mrow><mrow><msub><mrow><mi>x</mi></mrow><mrow><mn>0</mn></mrow></msub></mrow></msup></mrow></msup></math></span> this induces a <span><math><mi>U</mi><mo>(</mo><msub><mrow><mi>sl</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo><mo>⊗</mo><mi>U</mi><mo>(</mo><msub><mrow><mi>sl</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></math></span>-module structure on <span><math><msup><mrow><mi>C</mi></mrow><mrow><msup><mrow><mn>2</mn></mrow><mrow><mi>Ω</mi></mrow></msup></mrow></msup></math></span> denoted by <span><math><msup><mrow><mi>C</mi></mrow><mrow><msup><mrow><mn>2</mn></mrow><mrow><mi>Ω</mi></mrow></msup></mrow></msup><mo>(</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>)</mo></math></span>. Pulling back via ♮ the <span><math><mi>U</mi><mo>(</mo><msub><mrow><mi>sl</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo><mo>⊗</mo><mi>U</mi><mo>(</mo><msub><mrow><mi>sl</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></math></span>-module <span><math><msup><mrow><mi>C</mi></mrow><mrow><msup><mrow><mn>2</mn></mrow><mrow><mi>Ω</mi></mrow></msup></mrow></msup><mo>(</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>)</mo></math></span> forms an <span><math><mi>H</mi></math></span>-module. When <span><math><mn>1</mn><mo>≤</mo><mi>k</mi><mo>≤</mo><mi>D</mi><mo>−</mo><mn>1","PeriodicalId":50230,"journal":{"name":"Journal of Combinatorial Theory Series A","volume":"214 ","pages":"Article 106028"},"PeriodicalIF":0.9,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143510465","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"More on r-cross t-intersecting families for vector spaces","authors":"Tian Yao , Dehai Liu , Kaishun Wang","doi":"10.1016/j.jcta.2025.106031","DOIUrl":"10.1016/j.jcta.2025.106031","url":null,"abstract":"<div><div>Let <em>V</em> be a finite dimensional vector space over a finite field. Suppose that <span><math><msub><mrow><mi>F</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span>, <span><math><msub><mrow><mi>F</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>, …, <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>r</mi></mrow></msub></math></span> are <em>r</em>-cross <em>t</em>-intersecting families of <em>k</em>-subspaces of <em>V</em>. In this paper, we determine the extremal structure when <span><math><msubsup><mrow><mo>∏</mo></mrow><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>r</mi></mrow></msubsup><mo>|</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>|</mo></math></span> is maximum under the condition that <span><math><mi>dim</mi><mo></mo><mo>(</mo><msub><mrow><mo>⋂</mo></mrow><mrow><mi>F</mi><mo>∈</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>i</mi></mrow></msub></mrow></msub><mi>F</mi><mo>)</mo><mo><</mo><mi>t</mi></math></span> for each <em>i</em>.</div></div>","PeriodicalId":50230,"journal":{"name":"Journal of Combinatorial Theory Series A","volume":"213 ","pages":"Article 106031"},"PeriodicalIF":0.9,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143510698","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Maarten De Boeck , Jozefien D'haeseleer , Morgan Rodgers
{"title":"Regular ovoids and Cameron-Liebler sets of generators in polar spaces","authors":"Maarten De Boeck , Jozefien D'haeseleer , Morgan Rodgers","doi":"10.1016/j.jcta.2025.106029","DOIUrl":"10.1016/j.jcta.2025.106029","url":null,"abstract":"<div><div>Cameron-Liebler sets of generators in polar spaces were introduced a few years ago as natural generalisations of the Cameron-Liebler sets of subspaces in projective spaces. In this article we present the first two constructions of non-trivial Cameron-Liebler sets of generators in polar spaces. Also regular <em>m</em>-ovoids of <em>k</em>-spaces are introduced as a generalization of <em>m</em>-ovoids of polar spaces. They are used in one of the aforementioned constructions of Cameron-Liebler sets.</div></div>","PeriodicalId":50230,"journal":{"name":"Journal of Combinatorial Theory Series A","volume":"213 ","pages":"Article 106029"},"PeriodicalIF":0.9,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143480765","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Truncated forms of MacMahon's q-series","authors":"Mircea Merca","doi":"10.1016/j.jcta.2025.106020","DOIUrl":"10.1016/j.jcta.2025.106020","url":null,"abstract":"<div><div>In 1920, Percy Alexander MacMahon defined the partition generating functions<span><span><span><math><mrow><msub><mrow><mi>A</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>(</mo><mi>q</mi><mo>)</mo><mo>:</mo><mo>=</mo><munder><mo>∑</mo><mrow><mn>0</mn><mo><</mo><msub><mrow><mi>n</mi></mrow><mrow><mn>1</mn></mrow></msub><mo><</mo><msub><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msub><mo><</mo><mo>⋯</mo><mo><</mo><msub><mrow><mi>n</mi></mrow><mrow><mi>k</mi></mrow></msub></mrow></munder><mfrac><mrow><msup><mrow><mi>q</mi></mrow><mrow><msub><mrow><mi>n</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>+</mo><msub><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>+</mo><mo>⋯</mo><mo>+</mo><msub><mrow><mi>n</mi></mrow><mrow><mi>k</mi></mrow></msub></mrow></msup></mrow><mrow><msup><mrow><mo>(</mo><mn>1</mn><mo>−</mo><msup><mrow><mi>q</mi></mrow><mrow><msub><mrow><mi>n</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow></msup><mo>)</mo></mrow><mrow><mn>2</mn></mrow></msup><msup><mrow><mo>(</mo><mn>1</mn><mo>−</mo><msup><mrow><mi>q</mi></mrow><mrow><msub><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></msup><mo>)</mo></mrow><mrow><mn>2</mn></mrow></msup><mo>⋯</mo><msup><mrow><mo>(</mo><mn>1</mn><mo>−</mo><msup><mrow><mi>q</mi></mrow><mrow><msub><mrow><mi>n</mi></mrow><mrow><mi>k</mi></mrow></msub></mrow></msup><mo>)</mo></mrow><mrow><mn>2</mn></mrow></msup></mrow></mfrac></mrow></math></span></span></span> and<span><span><span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>(</mo><mi>q</mi><mo>)</mo><mo>:</mo><mo>=</mo><munder><mo>∑</mo><mrow><mn>0</mn><mo><</mo><msub><mrow><mi>n</mi></mrow><mrow><mn>1</mn></mrow></msub><mo><</mo><msub><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msub><mo><</mo><mo>⋯</mo><mo><</mo><msub><mrow><mi>n</mi></mrow><mrow><mi>k</mi></mrow></msub></mrow></munder><mfrac><mrow><msup><mrow><mi>q</mi></mrow><mrow><mn>2</mn><msub><mrow><mi>n</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>+</mo><mn>2</mn><msub><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>+</mo><mo>⋯</mo><mo>+</mo><mn>2</mn><msub><mrow><mi>n</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>−</mo><mi>k</mi></mrow></msup></mrow><mrow><msup><mrow><mo>(</mo><mn>1</mn><mo>−</mo><msup><mrow><mi>q</mi></mrow><mrow><mn>2</mn><msub><mrow><mi>n</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>−</mo><mn>1</mn></mrow></msup><mo>)</mo></mrow><mrow><mn>2</mn></mrow></msup><msup><mrow><mo>(</mo><mn>1</mn><mo>−</mo><msup><mrow><mi>q</mi></mrow><mrow><mn>2</mn><msub><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>−</mo><mn>1</mn></mrow></msup><mo>)</mo></mrow><mrow><mn>2</mn></mrow></msup><mo>⋯</mo><msup><mrow><mo>(</mo><mn>1</mn><mo>−</mo><msup><mrow><mi>q</mi></mrow><mrow><mn>2</mn><msub><mrow><mi>n</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>−</mo><mn>1</mn></mrow></msup><mo>)</mo></mrow><mrow><mn>2</mn></mrow></msup></mrow></mfrac></math></span></span></span> which have since played an important rol","PeriodicalId":50230,"journal":{"name":"Journal of Combinatorial Theory Series A","volume":"213 ","pages":"Article 106020"},"PeriodicalIF":0.9,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143480764","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Simple geometric mitosis","authors":"Valentina Kiritchenko","doi":"10.1016/j.jcta.2025.106022","DOIUrl":"10.1016/j.jcta.2025.106022","url":null,"abstract":"<div><div>We construct simple geometric operations on faces of the Cayley sum of two polytopes. These operations can be thought of as convex geometric counterparts of divided difference operators in Schubert calculus. We show that these operations give a uniform construction of Knutson–Miller mitosis in the type <em>A</em> and Fujita mitosis in the type <em>C</em> on Kogan faces of Gelfand–Zetlin polytopes.</div></div>","PeriodicalId":50230,"journal":{"name":"Journal of Combinatorial Theory Series A","volume":"213 ","pages":"Article 106022"},"PeriodicalIF":0.9,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143474227","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"On common energies and sumsets","authors":"Shkredov I.D.","doi":"10.1016/j.jcta.2025.106026","DOIUrl":"10.1016/j.jcta.2025.106026","url":null,"abstract":"<div><div>We obtain a polynomial criterion for a set to have a small doubling in terms of the common energy of its subsets.</div></div>","PeriodicalId":50230,"journal":{"name":"Journal of Combinatorial Theory Series A","volume":"213 ","pages":"Article 106026"},"PeriodicalIF":0.9,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143474228","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Structure of Terwilliger algebras of quasi-thin association schemes","authors":"Zhenxian Chen , Changchang Xi","doi":"10.1016/j.jcta.2025.106024","DOIUrl":"10.1016/j.jcta.2025.106024","url":null,"abstract":"<div><div>We show that the Terwilliger algebra of a quasi-thin association scheme over a field is always a quasi-hereditary cellular algebra in the sense of Cline-Parshall-Scott and of Graham-Lehrer, respectively, and that the basic algebra of the Terwilliger algebra is the dual extension of a star with all arrows pointing to its center if the field has characteristic 2. Thus many homological and representation-theoretic properties of these Terwilliger algebras can be determined completely. For example, the Nakayama conjecture holds true for Terwilliger algebras of quasi-thin association schemes.</div></div>","PeriodicalId":50230,"journal":{"name":"Journal of Combinatorial Theory Series A","volume":"213 ","pages":"Article 106024"},"PeriodicalIF":0.9,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143480678","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A symmetry on weakly increasing trees and multiset Schett polynomials","authors":"Zhicong Lin , Jun Ma","doi":"10.1016/j.jcta.2025.106010","DOIUrl":"10.1016/j.jcta.2025.106010","url":null,"abstract":"<div><div>By considering the parity of the degrees and levels of nodes in increasing trees, a new combinatorial interpretation for the coefficients of the Taylor expansions of the Jacobi elliptic functions is found. As one application of this new interpretation, a conjecture of Ma–Mansour–Wang–Yeh is solved. Unifying the concepts of increasing trees and plane trees, Lin–Ma–Ma–Zhou introduced weakly increasing trees on a multiset. A symmetry joint distribution of “even-degree nodes on odd levels” and “odd-degree nodes” on weakly increasing trees is found, extending the Schett polynomials, a generalization of the Jacobi elliptic functions introduced by Schett, to multisets. A combinatorial proof and an algebraic proof of this symmetry are provided, as well as several relevant interesting consequences. Moreover, via introducing a group action on trees, we prove the partial <em>γ</em>-positivity of the multiset Schett polynomials, a result which implies both the symmetry and the unimodality of these polynomials.</div></div>","PeriodicalId":50230,"journal":{"name":"Journal of Combinatorial Theory Series A","volume":"213 ","pages":"Article 106010"},"PeriodicalIF":0.9,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143103357","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}