Journal of Combinatorial Theory Series A最新文献

筛选
英文 中文
Diametric problem for permutations with the Ulam metric (optimal anticodes)
IF 0.9 2区 数学
Journal of Combinatorial Theory Series A Pub Date : 2024-12-19 DOI: 10.1016/j.jcta.2024.106002
Pat Devlin, Leo Douhovnikoff
{"title":"Diametric problem for permutations with the Ulam metric (optimal anticodes)","authors":"Pat Devlin,&nbsp;Leo Douhovnikoff","doi":"10.1016/j.jcta.2024.106002","DOIUrl":"10.1016/j.jcta.2024.106002","url":null,"abstract":"<div><div>We study the diametric problem (i.e., optimal anticodes) in the space of permutations under the Ulam distance. That is, let <span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> denote the set of permutations on <em>n</em> symbols, and for each <span><math><mi>σ</mi><mo>,</mo><mi>τ</mi><mo>∈</mo><msub><mrow><mi>S</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>, define their Ulam distance as the number of distinct symbols that must be deleted from each until they are equal. We obtain a near-optimal upper bound on the size of the intersection of two balls in this space, and as a corollary, we prove that a set of diameter at most <em>k</em> has size at most <span><math><msup><mrow><mn>2</mn></mrow><mrow><mi>k</mi><mo>+</mo><mi>C</mi><msup><mrow><mi>k</mi></mrow><mrow><mn>2</mn><mo>/</mo><mn>3</mn></mrow></msup></mrow></msup><mi>n</mi><mo>!</mo><mo>/</mo><mo>(</mo><mi>n</mi><mo>−</mo><mi>k</mi><mo>)</mo><mo>!</mo></math></span>, compared to the best known construction of size <span><math><mi>n</mi><mo>!</mo><mo>/</mo><mo>(</mo><mi>n</mi><mo>−</mo><mi>k</mi><mo>)</mo><mo>!</mo></math></span>.</div></div>","PeriodicalId":50230,"journal":{"name":"Journal of Combinatorial Theory Series A","volume":"212 ","pages":"Article 106002"},"PeriodicalIF":0.9,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143095724","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cayley extensions of maniplexes and polytopes
IF 0.9 2区 数学
Journal of Combinatorial Theory Series A Pub Date : 2024-12-18 DOI: 10.1016/j.jcta.2024.106000
Gabe Cunningham , Elías Mochán , Antonio Montero
{"title":"Cayley extensions of maniplexes and polytopes","authors":"Gabe Cunningham ,&nbsp;Elías Mochán ,&nbsp;Antonio Montero","doi":"10.1016/j.jcta.2024.106000","DOIUrl":"10.1016/j.jcta.2024.106000","url":null,"abstract":"<div><div>A map on a surface whose automorphism group has a subgroup acting regularly on its vertices is called a Cayley map. Here we generalize that notion to maniplexes and polytopes. We define <span><math><mi>M</mi></math></span> to be a <em>Cayley extension</em> of <span><math><mi>K</mi></math></span> if the facets of <span><math><mi>M</mi></math></span> are isomorphic to <span><math><mi>K</mi></math></span> and if some subgroup of the automorphism group of <span><math><mi>M</mi></math></span> acts regularly on the facets of <span><math><mi>M</mi></math></span>. We show that many natural extensions in the literature on maniplexes and polytopes are in fact Cayley extensions. We also describe several universal Cayley extensions. Finally, we examine the automorphism group and symmetry type graph of Cayley extensions.</div></div>","PeriodicalId":50230,"journal":{"name":"Journal of Combinatorial Theory Series A","volume":"212 ","pages":"Article 106000"},"PeriodicalIF":0.9,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143095348","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On the size of integer programs with bounded non-vanishing subdeterminants
IF 0.9 2区 数学
Journal of Combinatorial Theory Series A Pub Date : 2024-12-18 DOI: 10.1016/j.jcta.2024.106003
Björn Kriepke, Gohar M. Kyureghyan, Matthias Schymura
{"title":"On the size of integer programs with bounded non-vanishing subdeterminants","authors":"Björn Kriepke,&nbsp;Gohar M. Kyureghyan,&nbsp;Matthias Schymura","doi":"10.1016/j.jcta.2024.106003","DOIUrl":"10.1016/j.jcta.2024.106003","url":null,"abstract":"<div><div>Motivated by complexity questions in integer programming, this paper aims to contribute to the understanding of combinatorial properties of integer matrices of row rank <em>r</em> and with bounded subdeterminants. In particular, we study the column number question for integer matrices whose every <span><math><mi>r</mi><mo>×</mo><mi>r</mi></math></span> minor is non-zero and bounded by a fixed constant Δ in absolute value. Approaching the problem in two different ways, one that uses results from coding theory, and the other from the geometry of numbers, we obtain linear and asymptotically sublinear upper bounds on the maximal number of columns of such matrices, respectively. We complement these results by lower bound constructions, matching the linear upper bound for <span><math><mi>r</mi><mo>=</mo><mn>2</mn></math></span>, and a discussion of a computational approach to determine the maximal number of columns for small parameters Δ and <em>r</em>.</div></div>","PeriodicalId":50230,"journal":{"name":"Journal of Combinatorial Theory Series A","volume":"212 ","pages":"Article 106003"},"PeriodicalIF":0.9,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143095349","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On joint short minimal zero-sum subsequences over finite abelian groups of rank two 二阶有限阿贝尔群上的联合短最小零和子序列
IF 0.9 2区 数学
Journal of Combinatorial Theory Series A Pub Date : 2024-12-03 DOI: 10.1016/j.jcta.2024.105984
Yushuang Fan , Qinghai Zhong
{"title":"On joint short minimal zero-sum subsequences over finite abelian groups of rank two","authors":"Yushuang Fan ,&nbsp;Qinghai Zhong","doi":"10.1016/j.jcta.2024.105984","DOIUrl":"10.1016/j.jcta.2024.105984","url":null,"abstract":"<div><div>Let <span><math><mo>(</mo><mi>G</mi><mo>,</mo><mo>+</mo><mo>,</mo><mn>0</mn><mo>)</mo></math></span> be a finite abelian group and let <span><math><msup><mrow><mi>η</mi></mrow><mrow><mi>N</mi></mrow></msup><mo>(</mo><mi>G</mi><mo>)</mo></math></span> be the smallest integer <em>ℓ</em> such that every sequence over <span><math><mi>G</mi><mo>∖</mo><mo>{</mo><mn>0</mn><mo>}</mo></math></span> of length <em>ℓ</em> has two joint short minimal zero-sum subsequences. In 2013, Gao et al. obtained that <span><math><msup><mrow><mi>η</mi></mrow><mrow><mi>N</mi></mrow></msup><mo>(</mo><msub><mrow><mi>C</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>⊕</mo><msub><mrow><mi>C</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo><mo>=</mo><mn>3</mn><mi>n</mi><mo>+</mo><mn>1</mn></math></span> for every <span><math><mi>n</mi><mo>≥</mo><mn>2</mn></math></span> and solved the corresponding inverse problem for groups <span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>p</mi></mrow></msub><mo>⊕</mo><msub><mrow><mi>C</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span>, where <em>p</em> is a prime. In this paper, we determine the precise value of <span><math><msup><mrow><mi>η</mi></mrow><mrow><mi>N</mi></mrow></msup><mo>(</mo><mi>G</mi><mo>)</mo></math></span> for all finite abelian groups of rank 2 and resolve the corresponding inverse problem for groups <span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>⊕</mo><msub><mrow><mi>C</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>, where <span><math><mi>n</mi><mo>≥</mo><mn>2</mn></math></span>, which confirms a conjecture of Gao, Geroldinger and Wang for all <span><math><mi>n</mi><mo>≥</mo><mn>2</mn></math></span> except <span><math><mi>n</mi><mo>=</mo><mn>4</mn></math></span>.</div></div>","PeriodicalId":50230,"journal":{"name":"Journal of Combinatorial Theory Series A","volume":"212 ","pages":"Article 105984"},"PeriodicalIF":0.9,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142790045","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The degree of functions in the Johnson and q-Johnson schemes Johnson和q-Johnson格式中函数的度
IF 0.9 2区 数学
Journal of Combinatorial Theory Series A Pub Date : 2024-11-29 DOI: 10.1016/j.jcta.2024.105979
Michael Kiermaier , Jonathan Mannaert , Alfred Wassermann
{"title":"The degree of functions in the Johnson and q-Johnson schemes","authors":"Michael Kiermaier ,&nbsp;Jonathan Mannaert ,&nbsp;Alfred Wassermann","doi":"10.1016/j.jcta.2024.105979","DOIUrl":"10.1016/j.jcta.2024.105979","url":null,"abstract":"<div><div>In 1982, Cameron and Liebler investigated certain <em>special sets of lines</em> in <span><math><mi>PG</mi><mo>(</mo><mn>3</mn><mo>,</mo><mi>q</mi><mo>)</mo></math></span>, and gave several equivalent characterizations. Due to their interesting geometric and algebraic properties, these <em>Cameron-Liebler line classes</em> got much attention. Several generalizations and variants have been considered in the literature, the main directions being a variation of the dimensions of the involved spaces, and studying the analogous situation in the subset lattice. An important tool is the interpretation of the objects as Boolean functions in the <em>Johnson</em> and <em>q-Johnson schemes</em>.</div><div>In this article, we develop a unified theory covering all these variations. Generalized versions of algebraic and geometric properties will be investigated, having a parallel in the notion of <em>designs</em> and <em>antidesigns</em> in association schemes. This leads to a natural definition of the <em>degree</em> and the <em>weights</em> of functions in the ambient scheme, refining the existing definitions. We will study the effect of dualization and of elementary modifications of the ambient space on the degree and the weights. Moreover, a divisibility property of the sizes of Boolean functions of degree <em>t</em> will be proven.</div></div>","PeriodicalId":50230,"journal":{"name":"Journal of Combinatorial Theory Series A","volume":"212 ","pages":"Article 105979"},"PeriodicalIF":0.9,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142746446","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sequence reconstruction problem for deletion channels: A complete asymptotic solution 删除信道的序列重建问题:一个完整的渐近解
IF 0.9 2区 数学
Journal of Combinatorial Theory Series A Pub Date : 2024-11-27 DOI: 10.1016/j.jcta.2024.105980
Van Long Phuoc Pham , Keshav Goyal , Han Mao Kiah
{"title":"Sequence reconstruction problem for deletion channels: A complete asymptotic solution","authors":"Van Long Phuoc Pham ,&nbsp;Keshav Goyal ,&nbsp;Han Mao Kiah","doi":"10.1016/j.jcta.2024.105980","DOIUrl":"10.1016/j.jcta.2024.105980","url":null,"abstract":"<div><div>Transmit a codeword <figure><img></figure>, that belongs to an <span><math><mo>(</mo><mi>ℓ</mi><mo>−</mo><mn>1</mn><mo>)</mo></math></span>-deletion-correcting code of length <em>n</em>, over a <em>t</em>-deletion channel for some <span><math><mn>1</mn><mo>≤</mo><mi>ℓ</mi><mo>≤</mo><mi>t</mi><mo>&lt;</mo><mi>n</mi></math></span>. Levenshtein (2001) <span><span>[10]</span></span>, proposed the problem of determining <span><math><mi>N</mi><mo>(</mo><mi>n</mi><mo>,</mo><mi>ℓ</mi><mo>,</mo><mi>t</mi><mo>)</mo><mo>+</mo><mn>1</mn></math></span>, the minimum number of distinct channel outputs required to uniquely reconstruct <figure><img></figure>. Prior to this work, <span><math><mi>N</mi><mo>(</mo><mi>n</mi><mo>,</mo><mi>ℓ</mi><mo>,</mo><mi>t</mi><mo>)</mo></math></span> is known only when <span><math><mi>ℓ</mi><mo>∈</mo><mo>{</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>}</mo></math></span>. Here, we provide an asymptotically exact solution for all values of <em>ℓ</em> and <em>t</em>. Specifically, we show that <span><math><mi>N</mi><mo>(</mo><mi>n</mi><mo>,</mo><mi>ℓ</mi><mo>,</mo><mi>t</mi><mo>)</mo><mo>=</mo><mfrac><mrow><mo>(</mo><mtable><mtr><mtd><mrow><mn>2</mn><mi>ℓ</mi></mrow></mtd></mtr><mtr><mtd><mi>ℓ</mi></mtd></mtr></mtable><mo>)</mo></mrow><mrow><mo>(</mo><mi>t</mi><mo>−</mo><mi>ℓ</mi><mo>)</mo><mo>!</mo></mrow></mfrac><msup><mrow><mi>n</mi></mrow><mrow><mi>t</mi><mo>−</mo><mi>ℓ</mi></mrow></msup><mo>−</mo><mi>O</mi><mo>(</mo><msup><mrow><mi>n</mi></mrow><mrow><mi>t</mi><mo>−</mo><mi>ℓ</mi><mo>−</mo><mn>1</mn></mrow></msup><mo>)</mo></math></span>. In the special instances: where <span><math><mi>ℓ</mi><mo>=</mo><mi>t</mi></math></span>, we show that <span><math><mi>N</mi><mo>(</mo><mi>n</mi><mo>,</mo><mi>ℓ</mi><mo>,</mo><mi>ℓ</mi><mo>)</mo><mo>=</mo><mrow><mo>(</mo><mtable><mtr><mtd><mrow><mn>2</mn><mi>ℓ</mi></mrow></mtd></mtr><mtr><mtd><mi>ℓ</mi></mtd></mtr></mtable><mo>)</mo></mrow></math></span>; and when <span><math><mi>ℓ</mi><mo>=</mo><mn>3</mn></math></span> and <span><math><mi>t</mi><mo>=</mo><mn>4</mn></math></span>, we show that <span><math><mi>N</mi><mo>(</mo><mi>n</mi><mo>,</mo><mn>3</mn><mo>,</mo><mn>4</mn><mo>)</mo><mo>≤</mo><mn>20</mn><mi>n</mi><mo>−</mo><mn>150</mn></math></span>. We also provide a conjecture on the exact value of <span><math><mi>N</mi><mo>(</mo><mi>n</mi><mo>,</mo><mi>ℓ</mi><mo>,</mo><mi>t</mi><mo>)</mo></math></span> for all values of <em>n</em>, <em>ℓ</em>, and <em>t</em>.</div></div>","PeriodicalId":50230,"journal":{"name":"Journal of Combinatorial Theory Series A","volume":"211 ","pages":"Article 105980"},"PeriodicalIF":0.9,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142720012","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Non-empty pairwise cross-intersecting families 非空成对交叉族
IF 0.9 2区 数学
Journal of Combinatorial Theory Series A Pub Date : 2024-11-26 DOI: 10.1016/j.jcta.2024.105981
Yang Huang, Yuejian Peng
{"title":"Non-empty pairwise cross-intersecting families","authors":"Yang Huang,&nbsp;Yuejian Peng","doi":"10.1016/j.jcta.2024.105981","DOIUrl":"10.1016/j.jcta.2024.105981","url":null,"abstract":"&lt;div&gt;&lt;div&gt;Two families &lt;span&gt;&lt;math&gt;&lt;mi&gt;A&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; and &lt;span&gt;&lt;math&gt;&lt;mi&gt;B&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; are cross-intersecting if &lt;span&gt;&lt;math&gt;&lt;mi&gt;A&lt;/mi&gt;&lt;mo&gt;∩&lt;/mo&gt;&lt;mi&gt;B&lt;/mi&gt;&lt;mo&gt;≠&lt;/mo&gt;&lt;mo&gt;∅&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt; for any &lt;span&gt;&lt;math&gt;&lt;mi&gt;A&lt;/mi&gt;&lt;mo&gt;∈&lt;/mo&gt;&lt;mi&gt;A&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; and &lt;span&gt;&lt;math&gt;&lt;mi&gt;B&lt;/mi&gt;&lt;mo&gt;∈&lt;/mo&gt;&lt;mi&gt;B&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;. We call &lt;em&gt;t&lt;/em&gt; families &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;A&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;A&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mo&gt;…&lt;/mo&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;A&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt; pairwise cross-intersecting families if &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;A&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;i&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt; and &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;A&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;j&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt; are cross-intersecting for &lt;span&gt;&lt;math&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mo&gt;≤&lt;/mo&gt;&lt;mi&gt;i&lt;/mi&gt;&lt;mo&gt;&lt;&lt;/mo&gt;&lt;mi&gt;j&lt;/mi&gt;&lt;mo&gt;≤&lt;/mo&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;. Additionally, if &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;A&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;j&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;≠&lt;/mo&gt;&lt;mo&gt;∅&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt; for each &lt;span&gt;&lt;math&gt;&lt;mi&gt;j&lt;/mi&gt;&lt;mo&gt;∈&lt;/mo&gt;&lt;mo&gt;[&lt;/mo&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;mo&gt;]&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt;, then we say that &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;A&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;A&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mo&gt;…&lt;/mo&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;A&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt; are non-empty pairwise cross-intersecting. Let &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;A&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;⊆&lt;/mo&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mtable&gt;&lt;mtr&gt;&lt;mtd&gt;&lt;mrow&gt;&lt;mo&gt;[&lt;/mo&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;]&lt;/mo&gt;&lt;/mrow&gt;&lt;/mtd&gt;&lt;/mtr&gt;&lt;mtr&gt;&lt;mtd&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/mtd&gt;&lt;/mtr&gt;&lt;/mtable&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;A&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;⊆&lt;/mo&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mtable&gt;&lt;mtr&gt;&lt;mtd&gt;&lt;mrow&gt;&lt;mo&gt;[&lt;/mo&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;]&lt;/mo&gt;&lt;/mrow&gt;&lt;/mtd&gt;&lt;/mtr&gt;&lt;mtr&gt;&lt;mtd&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/mtd&gt;&lt;/mtr&gt;&lt;/mtable&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mo&gt;…&lt;/mo&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;A&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;⊆&lt;/mo&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mtable&gt;&lt;mtr&gt;&lt;mtd&gt;&lt;mrow&gt;&lt;mo&gt;[&lt;/mo&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;]&lt;/mo&gt;&lt;/mrow&gt;&lt;/mtd&gt;&lt;/mtr&gt;&lt;mtr&gt;&lt;mtd&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/mtd&gt;&lt;/mtr&gt;&lt;/mtable&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; be non-empty pairwise cross-intersecting families with &lt;span&gt;&lt;math&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;mo&gt;≥&lt;/mo&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/math&gt;&lt;/span&gt;, &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;≥&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;≥&lt;/mo&gt;&lt;mo&gt;⋯&lt;/mo&gt;&lt;mo&gt;≥&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt;, &lt;span&gt;&lt;math&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;≥&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt; and &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;d&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;d&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/m","PeriodicalId":50230,"journal":{"name":"Journal of Combinatorial Theory Series A","volume":"211 ","pages":"Article 105981"},"PeriodicalIF":0.9,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142720004","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A classification of the flag-transitive 2-(v,k,2) designs 2-(v,k,2)旗转设计的分类
IF 0.9 2区 数学
Journal of Combinatorial Theory Series A Pub Date : 2024-11-26 DOI: 10.1016/j.jcta.2024.105983
Hongxue Liang , Alessandro Montinaro
{"title":"A classification of the flag-transitive 2-(v,k,2) designs","authors":"Hongxue Liang ,&nbsp;Alessandro Montinaro","doi":"10.1016/j.jcta.2024.105983","DOIUrl":"10.1016/j.jcta.2024.105983","url":null,"abstract":"<div><div>In this paper, we provide a complete classification of 2-<span><math><mo>(</mo><mi>v</mi><mo>,</mo><mi>k</mi><mo>,</mo><mn>2</mn><mo>)</mo></math></span> designs admitting a flag-transitive automorphism group of affine type with the only exception of the semilinear 1-dimensional group. Alongside this analysis, we provide a construction of seven new families of such flag-transitive 2-designs, one of them infinite, and some of them involving remarkable objects such as <em>t</em>-spreads, translation planes, quadrics and Segre varieties.</div><div>Our result together with those of Alavi et al. <span><span>[1]</span></span>, <span><span>[2]</span></span>, Praeger et al. <span><span>[17]</span></span>, Zhou and the first author <span><span>[39]</span></span>, <span><span>[40]</span></span> provides a complete classification of 2-<span><math><mo>(</mo><mi>v</mi><mo>,</mo><mi>k</mi><mo>,</mo><mn>2</mn><mo>)</mo></math></span> design admitting a flag-transitive automorphism group with the only exception of the semilinear 1-dimensional case.</div></div>","PeriodicalId":50230,"journal":{"name":"Journal of Combinatorial Theory Series A","volume":"211 ","pages":"Article 105983"},"PeriodicalIF":0.9,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142701472","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Distributions of reciprocal sums of parts in integer partitions 整数分区中各部分倒数之和的分布
IF 0.9 2区 数学
Journal of Combinatorial Theory Series A Pub Date : 2024-11-26 DOI: 10.1016/j.jcta.2024.105982
Byungchan Kim , Eunmi Kim
{"title":"Distributions of reciprocal sums of parts in integer partitions","authors":"Byungchan Kim ,&nbsp;Eunmi Kim","doi":"10.1016/j.jcta.2024.105982","DOIUrl":"10.1016/j.jcta.2024.105982","url":null,"abstract":"<div><div>Let <span><math><msub><mrow><mi>D</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> be the set of partitions of <em>n</em> into distinct parts, and <span><math><mi>srp</mi><mo>(</mo><mi>λ</mi><mo>)</mo></math></span> be the sum of reciprocals of the parts of the partition <em>λ</em>. We show that as <span><math><mi>n</mi><mo>→</mo><mo>∞</mo></math></span>,<span><span><span><math><mi>E</mi><mo>[</mo><mi>srp</mi><mo>(</mo><mi>λ</mi><mo>)</mo><mo>:</mo><mi>λ</mi><mo>∈</mo><msub><mrow><mi>D</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>]</mo><mo>∼</mo><mfrac><mrow><mi>log</mi><mo>⁡</mo><mo>(</mo><mn>3</mn><mi>n</mi><mo>)</mo></mrow><mrow><mn>4</mn></mrow></mfrac><mspace></mspace><mtext>and</mtext><mspace></mspace><mi>Var</mi><mo>[</mo><mi>srp</mi><mo>(</mo><mi>λ</mi><mo>)</mo><mo>:</mo><mi>λ</mi><mo>∈</mo><msub><mrow><mi>D</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>]</mo><mo>∼</mo><mfrac><mrow><msup><mrow><mi>π</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow><mrow><mn>24</mn></mrow></mfrac><mo>.</mo></math></span></span></span> Moreover, for <span><math><msub><mrow><mi>P</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>, the set of ordinary partitions of <em>n</em>, we show that as <span><math><mi>n</mi><mo>→</mo><mo>∞</mo></math></span>,<span><span><span><math><mi>E</mi><mo>[</mo><mi>srp</mi><mo>(</mo><mi>λ</mi><mo>)</mo><mo>:</mo><mi>λ</mi><mo>∈</mo><msub><mrow><mi>P</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>]</mo><mo>∼</mo><mi>π</mi><msqrt><mrow><mfrac><mrow><mi>n</mi></mrow><mrow><mn>6</mn></mrow></mfrac></mrow></msqrt><mspace></mspace><mtext>and</mtext><mspace></mspace><mi>Var</mi><mo>[</mo><mi>srp</mi><mo>(</mo><mi>λ</mi><mo>)</mo><mo>:</mo><mi>λ</mi><mo>∈</mo><msub><mrow><mi>P</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>]</mo><mo>∼</mo><mfrac><mrow><msup><mrow><mi>π</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow><mrow><mn>15</mn></mrow></mfrac><mi>n</mi><mo>.</mo></math></span></span></span> To prove these asymptotic formulas in a uniform manner, we derive a general asymptotic formula using Wright's circle method.</div></div>","PeriodicalId":50230,"journal":{"name":"Journal of Combinatorial Theory Series A","volume":"211 ","pages":"Article 105982"},"PeriodicalIF":0.9,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142720007","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dominance complexes, neighborhood complexes and combinatorial Alexander duals 支配复合体、邻域复合体和组合亚历山大对偶
IF 0.9 2区 数学
Journal of Combinatorial Theory Series A Pub Date : 2024-11-16 DOI: 10.1016/j.jcta.2024.105978
Takahiro Matsushita , Shun Wakatsuki
{"title":"Dominance complexes, neighborhood complexes and combinatorial Alexander duals","authors":"Takahiro Matsushita ,&nbsp;Shun Wakatsuki","doi":"10.1016/j.jcta.2024.105978","DOIUrl":"10.1016/j.jcta.2024.105978","url":null,"abstract":"<div><div>We show that the dominance complex <span><math><mi>D</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> of a graph <em>G</em> coincides with the combinatorial Alexander dual of the neighborhood complex <span><math><mi>N</mi><mo>(</mo><mover><mrow><mi>G</mi></mrow><mo>‾</mo></mover><mo>)</mo></math></span> of the complement of <em>G</em>. Using this, we obtain a relation between the chromatic number <span><math><mi>χ</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> of <em>G</em> and the homology group of <span><math><mi>D</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span>. We also obtain several known results related to dominance complexes from well-known facts of neighborhood complexes. After that, we suggest a new method for computing the homology groups of the dominance complexes, using independence complexes of simple graphs. We show that several known computations of homology groups of dominance complexes can be reduced to known computations of independence complexes. Finally, we determine the homology group of <span><math><mi>D</mi><mo>(</mo><msub><mrow><mi>P</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>×</mo><msub><mrow><mi>P</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>)</mo></math></span> by determining the homotopy types of the independence complex of <span><math><msub><mrow><mi>P</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>×</mo><msub><mrow><mi>P</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>×</mo><msub><mrow><mi>P</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>.</div></div>","PeriodicalId":50230,"journal":{"name":"Journal of Combinatorial Theory Series A","volume":"211 ","pages":"Article 105978"},"PeriodicalIF":0.9,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142652948","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信