Characterization of polystochastic matrices of order 4 with zero permanent

IF 0.9 2区 数学 Q2 MATHEMATICS
Aleksei L. Perezhogin , Vladimir N. Potapov , Anna A. Taranenko , Sergey Yu. Vladimirov
{"title":"Characterization of polystochastic matrices of order 4 with zero permanent","authors":"Aleksei L. Perezhogin ,&nbsp;Vladimir N. Potapov ,&nbsp;Anna A. Taranenko ,&nbsp;Sergey Yu. Vladimirov","doi":"10.1016/j.jcta.2025.106060","DOIUrl":null,"url":null,"abstract":"<div><div>A multidimensional nonnegative matrix is called polystochastic if the sum of its entries over each line is equal to 1. The permanent of a multidimensional matrix is the sum of products of entries over all diagonals. We prove that if <em>d</em> is even, then the permanent of a <em>d</em>-dimensional polystochastic matrix of order 4 is positive, and for odd <em>d</em>, we give a complete characterization of <em>d</em>-dimensional polystochastic matrices with zero permanent.</div></div>","PeriodicalId":50230,"journal":{"name":"Journal of Combinatorial Theory Series A","volume":"215 ","pages":"Article 106060"},"PeriodicalIF":0.9000,"publicationDate":"2025-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Theory Series A","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S009731652500055X","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

A multidimensional nonnegative matrix is called polystochastic if the sum of its entries over each line is equal to 1. The permanent of a multidimensional matrix is the sum of products of entries over all diagonals. We prove that if d is even, then the permanent of a d-dimensional polystochastic matrix of order 4 is positive, and for odd d, we give a complete characterization of d-dimensional polystochastic matrices with zero permanent.
零永久的4阶多随机矩阵的表征
一个多维非负矩阵,如果其每一行上的元素之和等于1,则称为多随机矩阵。多维矩阵的恒量是所有对角线上元素的乘积的和。证明了如果d是偶数,则4阶的d维多随机矩阵的永久性是正的,对于奇数d,我们给出了零永久性的d维多随机矩阵的完整刻画。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.90
自引率
9.10%
发文量
94
审稿时长
12 months
期刊介绍: The Journal of Combinatorial Theory publishes original mathematical research concerned with theoretical and physical aspects of the study of finite and discrete structures in all branches of science. Series A is concerned primarily with structures, designs, and applications of combinatorics and is a valuable tool for mathematicians and computer scientists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信