Dean Crnković , Maarten De Boeck , Francesco Pavese , Andrea Švob
{"title":"q-可除设计图和Deza图的类似物","authors":"Dean Crnković , Maarten De Boeck , Francesco Pavese , Andrea Švob","doi":"10.1016/j.jcta.2025.106047","DOIUrl":null,"url":null,"abstract":"<div><div>Divisible design graphs were introduced in 2011 by Haemers, Kharaghani and Meulenberg. In this paper, we introduce the notion of <em>q</em>-analogs of divisible design graphs and show that all <em>q</em>-analogs of divisible design graphs come from spreads, and are actually <em>q</em>-analogs of strongly regular graphs.</div><div>Deza graphs were introduced by Erickson, Fernando, Haemers, Hardy and Hemmeter in 1999. In this paper, we introduce <em>q</em>-analogs of Deza graphs. Further, we determine possible parameters, give examples of <em>q</em>-analogs of Deza graphs and characterize all non-strongly regular <em>q</em>-analogs of Deza graphs with the smallest parameters.</div></div>","PeriodicalId":50230,"journal":{"name":"Journal of Combinatorial Theory Series A","volume":"215 ","pages":"Article 106047"},"PeriodicalIF":0.9000,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"q-Analogs of divisible design graphs and Deza graphs\",\"authors\":\"Dean Crnković , Maarten De Boeck , Francesco Pavese , Andrea Švob\",\"doi\":\"10.1016/j.jcta.2025.106047\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Divisible design graphs were introduced in 2011 by Haemers, Kharaghani and Meulenberg. In this paper, we introduce the notion of <em>q</em>-analogs of divisible design graphs and show that all <em>q</em>-analogs of divisible design graphs come from spreads, and are actually <em>q</em>-analogs of strongly regular graphs.</div><div>Deza graphs were introduced by Erickson, Fernando, Haemers, Hardy and Hemmeter in 1999. In this paper, we introduce <em>q</em>-analogs of Deza graphs. Further, we determine possible parameters, give examples of <em>q</em>-analogs of Deza graphs and characterize all non-strongly regular <em>q</em>-analogs of Deza graphs with the smallest parameters.</div></div>\",\"PeriodicalId\":50230,\"journal\":{\"name\":\"Journal of Combinatorial Theory Series A\",\"volume\":\"215 \",\"pages\":\"Article 106047\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2025-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Combinatorial Theory Series A\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0097316525000421\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Theory Series A","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0097316525000421","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
q-Analogs of divisible design graphs and Deza graphs
Divisible design graphs were introduced in 2011 by Haemers, Kharaghani and Meulenberg. In this paper, we introduce the notion of q-analogs of divisible design graphs and show that all q-analogs of divisible design graphs come from spreads, and are actually q-analogs of strongly regular graphs.
Deza graphs were introduced by Erickson, Fernando, Haemers, Hardy and Hemmeter in 1999. In this paper, we introduce q-analogs of Deza graphs. Further, we determine possible parameters, give examples of q-analogs of Deza graphs and characterize all non-strongly regular q-analogs of Deza graphs with the smallest parameters.
期刊介绍:
The Journal of Combinatorial Theory publishes original mathematical research concerned with theoretical and physical aspects of the study of finite and discrete structures in all branches of science. Series A is concerned primarily with structures, designs, and applications of combinatorics and is a valuable tool for mathematicians and computer scientists.