{"title":"Proof of Frankl's conjecture on cross-intersecting families","authors":"Yongjiang Wu, Lihua Feng, Yongtao Li","doi":"10.1016/j.jcta.2025.106062","DOIUrl":null,"url":null,"abstract":"<div><div>Two families <span><math><mi>F</mi></math></span> and <span><math><mi>G</mi></math></span> are called cross-intersecting if for every <span><math><mi>F</mi><mo>∈</mo><mi>F</mi></math></span> and <span><math><mi>G</mi><mo>∈</mo><mi>G</mi></math></span>, the intersection <span><math><mi>F</mi><mo>∩</mo><mi>G</mi></math></span> is non-empty. For any positive integers <em>n</em> and <em>k</em>, let <span><math><mo>(</mo><mtable><mtr><mtd><mrow><mo>[</mo><mi>n</mi><mo>]</mo></mrow></mtd></mtr><mtr><mtd><mi>k</mi></mtd></mtr></mtable><mo>)</mo></math></span> denote the family of all <em>k</em>-element subsets of <span><math><mo>{</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>n</mi><mo>}</mo></math></span>. Let <span><math><mi>t</mi><mo>,</mo><mi>s</mi><mo>,</mo><mi>k</mi><mo>,</mo><mi>n</mi></math></span> be non-negative integers with <span><math><mi>k</mi><mo>≥</mo><mi>s</mi><mo>+</mo><mn>1</mn></math></span> and <span><math><mi>n</mi><mo>≥</mo><mn>2</mn><mi>k</mi><mo>+</mo><mi>t</mi></math></span>. In 2016, Frankl proved that if <span><math><mi>F</mi><mo>⊆</mo><mrow><mo>(</mo><mtable><mtr><mtd><mrow><mo>[</mo><mi>n</mi><mo>]</mo></mrow></mtd></mtr><mtr><mtd><mrow><mi>k</mi><mo>+</mo><mi>t</mi></mrow></mtd></mtr></mtable><mo>)</mo></mrow></math></span> and <span><math><mi>G</mi><mo>⊆</mo><mrow><mo>(</mo><mtable><mtr><mtd><mrow><mo>[</mo><mi>n</mi><mo>]</mo></mrow></mtd></mtr><mtr><mtd><mi>k</mi></mtd></mtr></mtable><mo>)</mo></mrow></math></span> are cross-intersecting families, and <span><math><mi>F</mi></math></span> is <span><math><mo>(</mo><mi>t</mi><mo>+</mo><mn>1</mn><mo>)</mo></math></span>-intersecting and <span><math><mo>|</mo><mi>F</mi><mo>|</mo><mo>≥</mo><mn>1</mn></math></span>, then <span><math><mo>|</mo><mi>F</mi><mo>|</mo><mo>+</mo><mo>|</mo><mi>G</mi><mo>|</mo><mo>≤</mo><mrow><mo>(</mo><mtable><mtr><mtd><mi>n</mi></mtd></mtr><mtr><mtd><mi>k</mi></mtd></mtr></mtable><mo>)</mo></mrow><mo>−</mo><mrow><mo>(</mo><mtable><mtr><mtd><mrow><mi>n</mi><mo>−</mo><mi>k</mi><mo>−</mo><mi>t</mi></mrow></mtd></mtr><mtr><mtd><mi>k</mi></mtd></mtr></mtable><mo>)</mo></mrow><mo>+</mo><mn>1</mn></math></span>. Furthermore, Frankl conjectured that under an additional condition <span><math><mrow><mo>(</mo><mtable><mtr><mtd><mrow><mo>[</mo><mi>k</mi><mo>+</mo><mi>t</mi><mo>+</mo><mi>s</mi><mo>]</mo></mrow></mtd></mtr><mtr><mtd><mrow><mi>k</mi><mo>+</mo><mi>t</mi></mrow></mtd></mtr></mtable><mo>)</mo></mrow><mo>⊆</mo><mi>F</mi></math></span>, the following inequality holds:<span><span><span><math><mo>|</mo><mi>F</mi><mo>|</mo><mo>+</mo><mo>|</mo><mi>G</mi><mo>|</mo><mo>≤</mo><mrow><mo>(</mo><mtable><mtr><mtd><mrow><mi>k</mi><mo>+</mo><mi>t</mi><mo>+</mo><mi>s</mi></mrow></mtd></mtr><mtr><mtd><mrow><mi>k</mi><mo>+</mo><mi>t</mi></mrow></mtd></mtr></mtable><mo>)</mo></mrow><mo>+</mo><mrow><mo>(</mo><mtable><mtr><mtd><mi>n</mi></mtd></mtr><mtr><mtd><mi>k</mi></mtd></mtr></mtable><mo>)</mo></mrow><mo>−</mo><munderover><mo>∑</mo><mrow><mi>i</mi><mo>=</mo><mn>0</mn></mrow><mrow><mi>s</mi></mrow></munderover><mrow><mo>(</mo><mtable><mtr><mtd><mrow><mi>k</mi><mo>+</mo><mi>t</mi><mo>+</mo><mi>s</mi></mrow></mtd></mtr><mtr><mtd><mi>i</mi></mtd></mtr></mtable><mo>)</mo></mrow><mrow><mo>(</mo><mtable><mtr><mtd><mrow><mi>n</mi><mo>−</mo><mi>k</mi><mo>−</mo><mi>t</mi><mo>−</mo><mi>s</mi></mrow></mtd></mtr><mtr><mtd><mrow><mi>k</mi><mo>−</mo><mi>i</mi></mrow></mtd></mtr></mtable><mo>)</mo></mrow><mo>.</mo></math></span></span></span> In this paper, we prove this conjecture. The key ingredient is to establish a theorem for cross-intersecting families with a restricted universe. Moreover, we derive an analogous result for this conjecture.</div></div>","PeriodicalId":50230,"journal":{"name":"Journal of Combinatorial Theory Series A","volume":"216 ","pages":"Article 106062"},"PeriodicalIF":0.9000,"publicationDate":"2025-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Theory Series A","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0097316525000573","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Two families and are called cross-intersecting if for every and , the intersection is non-empty. For any positive integers n and k, let denote the family of all k-element subsets of . Let be non-negative integers with and . In 2016, Frankl proved that if and are cross-intersecting families, and is -intersecting and , then . Furthermore, Frankl conjectured that under an additional condition , the following inequality holds: In this paper, we prove this conjecture. The key ingredient is to establish a theorem for cross-intersecting families with a restricted universe. Moreover, we derive an analogous result for this conjecture.
期刊介绍:
The Journal of Combinatorial Theory publishes original mathematical research concerned with theoretical and physical aspects of the study of finite and discrete structures in all branches of science. Series A is concerned primarily with structures, designs, and applications of combinatorics and is a valuable tool for mathematicians and computer scientists.