Proof of Frankl's conjecture on cross-intersecting families

IF 0.9 2区 数学 Q2 MATHEMATICS
Yongjiang Wu, Lihua Feng, Yongtao Li
{"title":"Proof of Frankl's conjecture on cross-intersecting families","authors":"Yongjiang Wu,&nbsp;Lihua Feng,&nbsp;Yongtao Li","doi":"10.1016/j.jcta.2025.106062","DOIUrl":null,"url":null,"abstract":"<div><div>Two families <span><math><mi>F</mi></math></span> and <span><math><mi>G</mi></math></span> are called cross-intersecting if for every <span><math><mi>F</mi><mo>∈</mo><mi>F</mi></math></span> and <span><math><mi>G</mi><mo>∈</mo><mi>G</mi></math></span>, the intersection <span><math><mi>F</mi><mo>∩</mo><mi>G</mi></math></span> is non-empty. For any positive integers <em>n</em> and <em>k</em>, let <span><math><mo>(</mo><mtable><mtr><mtd><mrow><mo>[</mo><mi>n</mi><mo>]</mo></mrow></mtd></mtr><mtr><mtd><mi>k</mi></mtd></mtr></mtable><mo>)</mo></math></span> denote the family of all <em>k</em>-element subsets of <span><math><mo>{</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>n</mi><mo>}</mo></math></span>. Let <span><math><mi>t</mi><mo>,</mo><mi>s</mi><mo>,</mo><mi>k</mi><mo>,</mo><mi>n</mi></math></span> be non-negative integers with <span><math><mi>k</mi><mo>≥</mo><mi>s</mi><mo>+</mo><mn>1</mn></math></span> and <span><math><mi>n</mi><mo>≥</mo><mn>2</mn><mi>k</mi><mo>+</mo><mi>t</mi></math></span>. In 2016, Frankl proved that if <span><math><mi>F</mi><mo>⊆</mo><mrow><mo>(</mo><mtable><mtr><mtd><mrow><mo>[</mo><mi>n</mi><mo>]</mo></mrow></mtd></mtr><mtr><mtd><mrow><mi>k</mi><mo>+</mo><mi>t</mi></mrow></mtd></mtr></mtable><mo>)</mo></mrow></math></span> and <span><math><mi>G</mi><mo>⊆</mo><mrow><mo>(</mo><mtable><mtr><mtd><mrow><mo>[</mo><mi>n</mi><mo>]</mo></mrow></mtd></mtr><mtr><mtd><mi>k</mi></mtd></mtr></mtable><mo>)</mo></mrow></math></span> are cross-intersecting families, and <span><math><mi>F</mi></math></span> is <span><math><mo>(</mo><mi>t</mi><mo>+</mo><mn>1</mn><mo>)</mo></math></span>-intersecting and <span><math><mo>|</mo><mi>F</mi><mo>|</mo><mo>≥</mo><mn>1</mn></math></span>, then <span><math><mo>|</mo><mi>F</mi><mo>|</mo><mo>+</mo><mo>|</mo><mi>G</mi><mo>|</mo><mo>≤</mo><mrow><mo>(</mo><mtable><mtr><mtd><mi>n</mi></mtd></mtr><mtr><mtd><mi>k</mi></mtd></mtr></mtable><mo>)</mo></mrow><mo>−</mo><mrow><mo>(</mo><mtable><mtr><mtd><mrow><mi>n</mi><mo>−</mo><mi>k</mi><mo>−</mo><mi>t</mi></mrow></mtd></mtr><mtr><mtd><mi>k</mi></mtd></mtr></mtable><mo>)</mo></mrow><mo>+</mo><mn>1</mn></math></span>. Furthermore, Frankl conjectured that under an additional condition <span><math><mrow><mo>(</mo><mtable><mtr><mtd><mrow><mo>[</mo><mi>k</mi><mo>+</mo><mi>t</mi><mo>+</mo><mi>s</mi><mo>]</mo></mrow></mtd></mtr><mtr><mtd><mrow><mi>k</mi><mo>+</mo><mi>t</mi></mrow></mtd></mtr></mtable><mo>)</mo></mrow><mo>⊆</mo><mi>F</mi></math></span>, the following inequality holds:<span><span><span><math><mo>|</mo><mi>F</mi><mo>|</mo><mo>+</mo><mo>|</mo><mi>G</mi><mo>|</mo><mo>≤</mo><mrow><mo>(</mo><mtable><mtr><mtd><mrow><mi>k</mi><mo>+</mo><mi>t</mi><mo>+</mo><mi>s</mi></mrow></mtd></mtr><mtr><mtd><mrow><mi>k</mi><mo>+</mo><mi>t</mi></mrow></mtd></mtr></mtable><mo>)</mo></mrow><mo>+</mo><mrow><mo>(</mo><mtable><mtr><mtd><mi>n</mi></mtd></mtr><mtr><mtd><mi>k</mi></mtd></mtr></mtable><mo>)</mo></mrow><mo>−</mo><munderover><mo>∑</mo><mrow><mi>i</mi><mo>=</mo><mn>0</mn></mrow><mrow><mi>s</mi></mrow></munderover><mrow><mo>(</mo><mtable><mtr><mtd><mrow><mi>k</mi><mo>+</mo><mi>t</mi><mo>+</mo><mi>s</mi></mrow></mtd></mtr><mtr><mtd><mi>i</mi></mtd></mtr></mtable><mo>)</mo></mrow><mrow><mo>(</mo><mtable><mtr><mtd><mrow><mi>n</mi><mo>−</mo><mi>k</mi><mo>−</mo><mi>t</mi><mo>−</mo><mi>s</mi></mrow></mtd></mtr><mtr><mtd><mrow><mi>k</mi><mo>−</mo><mi>i</mi></mrow></mtd></mtr></mtable><mo>)</mo></mrow><mo>.</mo></math></span></span></span> In this paper, we prove this conjecture. The key ingredient is to establish a theorem for cross-intersecting families with a restricted universe. Moreover, we derive an analogous result for this conjecture.</div></div>","PeriodicalId":50230,"journal":{"name":"Journal of Combinatorial Theory Series A","volume":"216 ","pages":"Article 106062"},"PeriodicalIF":0.9000,"publicationDate":"2025-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Theory Series A","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0097316525000573","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Two families F and G are called cross-intersecting if for every FF and GG, the intersection FG is non-empty. For any positive integers n and k, let ([n]k) denote the family of all k-element subsets of {1,2,,n}. Let t,s,k,n be non-negative integers with ks+1 and n2k+t. In 2016, Frankl proved that if F([n]k+t) and G([n]k) are cross-intersecting families, and F is (t+1)-intersecting and |F|1, then |F|+|G|(nk)(nktk)+1. Furthermore, Frankl conjectured that under an additional condition ([k+t+s]k+t)F, the following inequality holds:|F|+|G|(k+t+sk+t)+(nk)i=0s(k+t+si)(nktski). In this paper, we prove this conjecture. The key ingredient is to establish a theorem for cross-intersecting families with a restricted universe. Moreover, we derive an analogous result for this conjecture.
弗兰克尔关于交叉家族猜想的证明
如果对于每一个F∈F和G∈G,交集F∩G是非空的,那么两个族F和G被称为交叉交集。对于任意正整数n和k,令([n]k)表示{1,2,…,n}的所有k元素子集的族。设t,s,k,n为非负整数,且k≥s+1,n≥2k+t。2016年,Frankl证明了如果F ([n]k+t)和G ([n]k)为交叉的家族,且F为(t+1)-相交,且|F|≥1,则|F|+|G|≤(nk)−(n−k−tk)+1。进一步,Frankl推测,在附加条件([k+t+s]k+t)的规模F下,有如下不等式成立:|F|+|G|≤(k+t+sk+t)+(nk) -∑i=0s(k+t+si)(n−k−t−sk−i)。在本文中,我们证明了这个猜想。关键是要建立一个具有有限宇宙的交叉族的定理。此外,我们还为这个猜想导出了一个类似的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.90
自引率
9.10%
发文量
94
审稿时长
12 months
期刊介绍: The Journal of Combinatorial Theory publishes original mathematical research concerned with theoretical and physical aspects of the study of finite and discrete structures in all branches of science. Series A is concerned primarily with structures, designs, and applications of combinatorics and is a valuable tool for mathematicians and computer scientists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信