{"title":"分离哈希族与大宇宙","authors":"Xin Wei , Xiande Zhang , Gennian Ge","doi":"10.1016/j.jcta.2025.106075","DOIUrl":null,"url":null,"abstract":"<div><div>Separating hash families are useful combinatorial structures which generalize several well-studied objects in cryptography and coding theory. Let <span><math><msub><mrow><mi>p</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>(</mo><mi>N</mi><mo>,</mo><mi>q</mi><mo>)</mo></math></span> denote the maximum size of universe for a <em>t</em>-perfect hash family of length <em>N</em> over an alphabet of size <em>q</em>. In this paper, we show that <span><math><msup><mrow><mi>q</mi></mrow><mrow><mn>2</mn><mo>−</mo><mi>o</mi><mo>(</mo><mn>1</mn><mo>)</mo></mrow></msup><mo><</mo><msub><mrow><mi>p</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>(</mo><mi>t</mi><mo>,</mo><mi>q</mi><mo>)</mo><mo>=</mo><mi>o</mi><mo>(</mo><msup><mrow><mi>q</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></math></span> for all <span><math><mi>t</mi><mo>≥</mo><mn>3</mn></math></span>, which answers an open problem about separating hash families raised by Blackburn et al. in 2008 for certain parameters. Previously, this result was known only for <span><math><mi>t</mi><mo>=</mo><mn>3</mn><mo>,</mo><mn>4</mn></math></span>. Our proof is obtained by establishing the existence of a large set of integers avoiding nontrivial solutions to a set of correlated linear equations.</div></div>","PeriodicalId":50230,"journal":{"name":"Journal of Combinatorial Theory Series A","volume":"216 ","pages":"Article 106075"},"PeriodicalIF":1.2000,"publicationDate":"2025-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Separating hash families with large universe\",\"authors\":\"Xin Wei , Xiande Zhang , Gennian Ge\",\"doi\":\"10.1016/j.jcta.2025.106075\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Separating hash families are useful combinatorial structures which generalize several well-studied objects in cryptography and coding theory. Let <span><math><msub><mrow><mi>p</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>(</mo><mi>N</mi><mo>,</mo><mi>q</mi><mo>)</mo></math></span> denote the maximum size of universe for a <em>t</em>-perfect hash family of length <em>N</em> over an alphabet of size <em>q</em>. In this paper, we show that <span><math><msup><mrow><mi>q</mi></mrow><mrow><mn>2</mn><mo>−</mo><mi>o</mi><mo>(</mo><mn>1</mn><mo>)</mo></mrow></msup><mo><</mo><msub><mrow><mi>p</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>(</mo><mi>t</mi><mo>,</mo><mi>q</mi><mo>)</mo><mo>=</mo><mi>o</mi><mo>(</mo><msup><mrow><mi>q</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></math></span> for all <span><math><mi>t</mi><mo>≥</mo><mn>3</mn></math></span>, which answers an open problem about separating hash families raised by Blackburn et al. in 2008 for certain parameters. Previously, this result was known only for <span><math><mi>t</mi><mo>=</mo><mn>3</mn><mo>,</mo><mn>4</mn></math></span>. Our proof is obtained by establishing the existence of a large set of integers avoiding nontrivial solutions to a set of correlated linear equations.</div></div>\",\"PeriodicalId\":50230,\"journal\":{\"name\":\"Journal of Combinatorial Theory Series A\",\"volume\":\"216 \",\"pages\":\"Article 106075\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-05-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Combinatorial Theory Series A\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0097316525000706\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Theory Series A","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0097316525000706","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
Separating hash families are useful combinatorial structures which generalize several well-studied objects in cryptography and coding theory. Let denote the maximum size of universe for a t-perfect hash family of length N over an alphabet of size q. In this paper, we show that for all , which answers an open problem about separating hash families raised by Blackburn et al. in 2008 for certain parameters. Previously, this result was known only for . Our proof is obtained by establishing the existence of a large set of integers avoiding nontrivial solutions to a set of correlated linear equations.
期刊介绍:
The Journal of Combinatorial Theory publishes original mathematical research concerned with theoretical and physical aspects of the study of finite and discrete structures in all branches of science. Series A is concerned primarily with structures, designs, and applications of combinatorics and is a valuable tool for mathematicians and computer scientists.