分离哈希族与大宇宙

IF 1.2 2区 数学 Q2 MATHEMATICS
Xin Wei , Xiande Zhang , Gennian Ge
{"title":"分离哈希族与大宇宙","authors":"Xin Wei ,&nbsp;Xiande Zhang ,&nbsp;Gennian Ge","doi":"10.1016/j.jcta.2025.106075","DOIUrl":null,"url":null,"abstract":"<div><div>Separating hash families are useful combinatorial structures which generalize several well-studied objects in cryptography and coding theory. Let <span><math><msub><mrow><mi>p</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>(</mo><mi>N</mi><mo>,</mo><mi>q</mi><mo>)</mo></math></span> denote the maximum size of universe for a <em>t</em>-perfect hash family of length <em>N</em> over an alphabet of size <em>q</em>. In this paper, we show that <span><math><msup><mrow><mi>q</mi></mrow><mrow><mn>2</mn><mo>−</mo><mi>o</mi><mo>(</mo><mn>1</mn><mo>)</mo></mrow></msup><mo>&lt;</mo><msub><mrow><mi>p</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>(</mo><mi>t</mi><mo>,</mo><mi>q</mi><mo>)</mo><mo>=</mo><mi>o</mi><mo>(</mo><msup><mrow><mi>q</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></math></span> for all <span><math><mi>t</mi><mo>≥</mo><mn>3</mn></math></span>, which answers an open problem about separating hash families raised by Blackburn et al. in 2008 for certain parameters. Previously, this result was known only for <span><math><mi>t</mi><mo>=</mo><mn>3</mn><mo>,</mo><mn>4</mn></math></span>. Our proof is obtained by establishing the existence of a large set of integers avoiding nontrivial solutions to a set of correlated linear equations.</div></div>","PeriodicalId":50230,"journal":{"name":"Journal of Combinatorial Theory Series A","volume":"216 ","pages":"Article 106075"},"PeriodicalIF":1.2000,"publicationDate":"2025-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Separating hash families with large universe\",\"authors\":\"Xin Wei ,&nbsp;Xiande Zhang ,&nbsp;Gennian Ge\",\"doi\":\"10.1016/j.jcta.2025.106075\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Separating hash families are useful combinatorial structures which generalize several well-studied objects in cryptography and coding theory. Let <span><math><msub><mrow><mi>p</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>(</mo><mi>N</mi><mo>,</mo><mi>q</mi><mo>)</mo></math></span> denote the maximum size of universe for a <em>t</em>-perfect hash family of length <em>N</em> over an alphabet of size <em>q</em>. In this paper, we show that <span><math><msup><mrow><mi>q</mi></mrow><mrow><mn>2</mn><mo>−</mo><mi>o</mi><mo>(</mo><mn>1</mn><mo>)</mo></mrow></msup><mo>&lt;</mo><msub><mrow><mi>p</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>(</mo><mi>t</mi><mo>,</mo><mi>q</mi><mo>)</mo><mo>=</mo><mi>o</mi><mo>(</mo><msup><mrow><mi>q</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></math></span> for all <span><math><mi>t</mi><mo>≥</mo><mn>3</mn></math></span>, which answers an open problem about separating hash families raised by Blackburn et al. in 2008 for certain parameters. Previously, this result was known only for <span><math><mi>t</mi><mo>=</mo><mn>3</mn><mo>,</mo><mn>4</mn></math></span>. Our proof is obtained by establishing the existence of a large set of integers avoiding nontrivial solutions to a set of correlated linear equations.</div></div>\",\"PeriodicalId\":50230,\"journal\":{\"name\":\"Journal of Combinatorial Theory Series A\",\"volume\":\"216 \",\"pages\":\"Article 106075\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-05-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Combinatorial Theory Series A\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0097316525000706\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Theory Series A","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0097316525000706","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

分离哈希族是一种有用的组合结构,它概括了密码学和编码理论中几个研究得很好的对象。设pt(N,q)表示长度为N的t-完美哈希族在大小为q的字母表上的最大空间大小。本文证明了对于所有t≥3,q2−o(1)<pt(t,q)=o(q2),这回答了Blackburn等人在2008年针对某些参数提出的关于分离哈希族的开放问题。以前,只有在t=3,4时才知道这个结果。我们的证明是通过建立一个大整数集的存在性而得到的,该整数集避免了一组相关线性方程的非平凡解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Separating hash families with large universe
Separating hash families are useful combinatorial structures which generalize several well-studied objects in cryptography and coding theory. Let pt(N,q) denote the maximum size of universe for a t-perfect hash family of length N over an alphabet of size q. In this paper, we show that q2o(1)<pt(t,q)=o(q2) for all t3, which answers an open problem about separating hash families raised by Blackburn et al. in 2008 for certain parameters. Previously, this result was known only for t=3,4. Our proof is obtained by establishing the existence of a large set of integers avoiding nontrivial solutions to a set of correlated linear equations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.90
自引率
9.10%
发文量
94
审稿时长
12 months
期刊介绍: The Journal of Combinatorial Theory publishes original mathematical research concerned with theoretical and physical aspects of the study of finite and discrete structures in all branches of science. Series A is concerned primarily with structures, designs, and applications of combinatorics and is a valuable tool for mathematicians and computer scientists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信