在欧几里得拉姆齐理论中避免短级数

IF 1.2 2区 数学 Q2 MATHEMATICS
Gabriel Currier , Kenneth Moore , Chi Hoi Yip
{"title":"在欧几里得拉姆齐理论中避免短级数","authors":"Gabriel Currier ,&nbsp;Kenneth Moore ,&nbsp;Chi Hoi Yip","doi":"10.1016/j.jcta.2025.106080","DOIUrl":null,"url":null,"abstract":"<div><div>We provide a general framework to construct colorings avoiding short monochromatic arithmetic progressions in Euclidean Ramsey theory. Specifically, if <span><math><msub><mrow><mi>ℓ</mi></mrow><mrow><mi>m</mi></mrow></msub></math></span> denotes <em>m</em> collinear points with consecutive points of distance one apart, we say that <span><math><msup><mrow><mi>E</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>↛</mo><mo>(</mo><msub><mrow><mi>ℓ</mi></mrow><mrow><mi>r</mi></mrow></msub><mo>,</mo><msub><mrow><mi>ℓ</mi></mrow><mrow><mi>s</mi></mrow></msub><mo>)</mo></math></span> if there is a red/blue coloring of <em>n</em>-dimensional Euclidean space that avoids red congruent copies of <span><math><msub><mrow><mi>ℓ</mi></mrow><mrow><mi>r</mi></mrow></msub></math></span> and blue congruent copies of <span><math><msub><mrow><mi>ℓ</mi></mrow><mrow><mi>s</mi></mrow></msub></math></span>. We show that <span><math><msup><mrow><mi>E</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>↛</mo><mo>(</mo><msub><mrow><mi>ℓ</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>,</mo><msub><mrow><mi>ℓ</mi></mrow><mrow><mn>20</mn></mrow></msub><mo>)</mo></math></span>, improving the best-known result <span><math><msup><mrow><mi>E</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>↛</mo><mo>(</mo><msub><mrow><mi>ℓ</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>,</mo><msub><mrow><mi>ℓ</mi></mrow><mrow><mn>1177</mn></mrow></msub><mo>)</mo></math></span> by Führer and Tóth, and also establish <span><math><msup><mrow><mi>E</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>↛</mo><mo>(</mo><msub><mrow><mi>ℓ</mi></mrow><mrow><mn>4</mn></mrow></msub><mo>,</mo><msub><mrow><mi>ℓ</mi></mrow><mrow><mn>14</mn></mrow></msub><mo>)</mo></math></span> and <span><math><msup><mrow><mi>E</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>↛</mo><mo>(</mo><msub><mrow><mi>ℓ</mi></mrow><mrow><mn>5</mn></mrow></msub><mo>,</mo><msub><mrow><mi>ℓ</mi></mrow><mrow><mn>8</mn></mrow></msub><mo>)</mo></math></span> in the spirit of the classical result <span><math><msup><mrow><mi>E</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>↛</mo><mo>(</mo><msub><mrow><mi>ℓ</mi></mrow><mrow><mn>6</mn></mrow></msub><mo>,</mo><msub><mrow><mi>ℓ</mi></mrow><mrow><mn>6</mn></mrow></msub><mo>)</mo></math></span> due to Erdős et al. We also show a number of similar 3-coloring results, as well as <span><math><msup><mrow><mi>E</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>↛</mo><mo>(</mo><msub><mrow><mi>ℓ</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>,</mo><mi>α</mi><msub><mrow><mi>ℓ</mi></mrow><mrow><mn>6889</mn></mrow></msub><mo>)</mo></math></span>, where <em>α</em> is an arbitrary positive real number. This final result answers a question of Führer and Tóth in the positive.</div></div>","PeriodicalId":50230,"journal":{"name":"Journal of Combinatorial Theory Series A","volume":"217 ","pages":"Article 106080"},"PeriodicalIF":1.2000,"publicationDate":"2025-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Avoiding short progressions in Euclidean Ramsey theory\",\"authors\":\"Gabriel Currier ,&nbsp;Kenneth Moore ,&nbsp;Chi Hoi Yip\",\"doi\":\"10.1016/j.jcta.2025.106080\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We provide a general framework to construct colorings avoiding short monochromatic arithmetic progressions in Euclidean Ramsey theory. Specifically, if <span><math><msub><mrow><mi>ℓ</mi></mrow><mrow><mi>m</mi></mrow></msub></math></span> denotes <em>m</em> collinear points with consecutive points of distance one apart, we say that <span><math><msup><mrow><mi>E</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>↛</mo><mo>(</mo><msub><mrow><mi>ℓ</mi></mrow><mrow><mi>r</mi></mrow></msub><mo>,</mo><msub><mrow><mi>ℓ</mi></mrow><mrow><mi>s</mi></mrow></msub><mo>)</mo></math></span> if there is a red/blue coloring of <em>n</em>-dimensional Euclidean space that avoids red congruent copies of <span><math><msub><mrow><mi>ℓ</mi></mrow><mrow><mi>r</mi></mrow></msub></math></span> and blue congruent copies of <span><math><msub><mrow><mi>ℓ</mi></mrow><mrow><mi>s</mi></mrow></msub></math></span>. We show that <span><math><msup><mrow><mi>E</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>↛</mo><mo>(</mo><msub><mrow><mi>ℓ</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>,</mo><msub><mrow><mi>ℓ</mi></mrow><mrow><mn>20</mn></mrow></msub><mo>)</mo></math></span>, improving the best-known result <span><math><msup><mrow><mi>E</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>↛</mo><mo>(</mo><msub><mrow><mi>ℓ</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>,</mo><msub><mrow><mi>ℓ</mi></mrow><mrow><mn>1177</mn></mrow></msub><mo>)</mo></math></span> by Führer and Tóth, and also establish <span><math><msup><mrow><mi>E</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>↛</mo><mo>(</mo><msub><mrow><mi>ℓ</mi></mrow><mrow><mn>4</mn></mrow></msub><mo>,</mo><msub><mrow><mi>ℓ</mi></mrow><mrow><mn>14</mn></mrow></msub><mo>)</mo></math></span> and <span><math><msup><mrow><mi>E</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>↛</mo><mo>(</mo><msub><mrow><mi>ℓ</mi></mrow><mrow><mn>5</mn></mrow></msub><mo>,</mo><msub><mrow><mi>ℓ</mi></mrow><mrow><mn>8</mn></mrow></msub><mo>)</mo></math></span> in the spirit of the classical result <span><math><msup><mrow><mi>E</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>↛</mo><mo>(</mo><msub><mrow><mi>ℓ</mi></mrow><mrow><mn>6</mn></mrow></msub><mo>,</mo><msub><mrow><mi>ℓ</mi></mrow><mrow><mn>6</mn></mrow></msub><mo>)</mo></math></span> due to Erdős et al. We also show a number of similar 3-coloring results, as well as <span><math><msup><mrow><mi>E</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>↛</mo><mo>(</mo><msub><mrow><mi>ℓ</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>,</mo><mi>α</mi><msub><mrow><mi>ℓ</mi></mrow><mrow><mn>6889</mn></mrow></msub><mo>)</mo></math></span>, where <em>α</em> is an arbitrary positive real number. This final result answers a question of Führer and Tóth in the positive.</div></div>\",\"PeriodicalId\":50230,\"journal\":{\"name\":\"Journal of Combinatorial Theory Series A\",\"volume\":\"217 \",\"pages\":\"Article 106080\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-06-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Combinatorial Theory Series A\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0097316525000755\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Theory Series A","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0097316525000755","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在欧几里得拉姆齐理论中,我们提供了一个构造着色避免短单色算术级数的一般框架。具体地说,如果lm表示m个距离为1的连续点的共线点,我们说En ø (lr, ls)如果n维欧几里德空间的红/蓝着色避免了lr的红色同余拷贝和ls的蓝色同余拷贝。我们通过 hrer和Tóth证明了En倍受(3,1177),改进了最著名的结果En倍受(3,1177),并根据Erdős等人的经典结果En倍受(6,1 6)的精神建立了En倍受(4,1 14)和En倍受(5,1 8)。我们还展示了一些类似的3-着色结果,以及En ø (l3,α l6889),其中α是任意正实数。这个最终结果肯定地回答了一个关于 hrer和Tóth的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Avoiding short progressions in Euclidean Ramsey theory
We provide a general framework to construct colorings avoiding short monochromatic arithmetic progressions in Euclidean Ramsey theory. Specifically, if m denotes m collinear points with consecutive points of distance one apart, we say that En(r,s) if there is a red/blue coloring of n-dimensional Euclidean space that avoids red congruent copies of r and blue congruent copies of s. We show that En(3,20), improving the best-known result En(3,1177) by Führer and Tóth, and also establish En(4,14) and En(5,8) in the spirit of the classical result En(6,6) due to Erdős et al. We also show a number of similar 3-coloring results, as well as En(3,α6889), where α is an arbitrary positive real number. This final result answers a question of Führer and Tóth in the positive.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.90
自引率
9.10%
发文量
94
审稿时长
12 months
期刊介绍: The Journal of Combinatorial Theory publishes original mathematical research concerned with theoretical and physical aspects of the study of finite and discrete structures in all branches of science. Series A is concerned primarily with structures, designs, and applications of combinatorics and is a valuable tool for mathematicians and computer scientists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信