{"title":"在欧几里得拉姆齐理论中避免短级数","authors":"Gabriel Currier , Kenneth Moore , Chi Hoi Yip","doi":"10.1016/j.jcta.2025.106080","DOIUrl":null,"url":null,"abstract":"<div><div>We provide a general framework to construct colorings avoiding short monochromatic arithmetic progressions in Euclidean Ramsey theory. Specifically, if <span><math><msub><mrow><mi>ℓ</mi></mrow><mrow><mi>m</mi></mrow></msub></math></span> denotes <em>m</em> collinear points with consecutive points of distance one apart, we say that <span><math><msup><mrow><mi>E</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>↛</mo><mo>(</mo><msub><mrow><mi>ℓ</mi></mrow><mrow><mi>r</mi></mrow></msub><mo>,</mo><msub><mrow><mi>ℓ</mi></mrow><mrow><mi>s</mi></mrow></msub><mo>)</mo></math></span> if there is a red/blue coloring of <em>n</em>-dimensional Euclidean space that avoids red congruent copies of <span><math><msub><mrow><mi>ℓ</mi></mrow><mrow><mi>r</mi></mrow></msub></math></span> and blue congruent copies of <span><math><msub><mrow><mi>ℓ</mi></mrow><mrow><mi>s</mi></mrow></msub></math></span>. We show that <span><math><msup><mrow><mi>E</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>↛</mo><mo>(</mo><msub><mrow><mi>ℓ</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>,</mo><msub><mrow><mi>ℓ</mi></mrow><mrow><mn>20</mn></mrow></msub><mo>)</mo></math></span>, improving the best-known result <span><math><msup><mrow><mi>E</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>↛</mo><mo>(</mo><msub><mrow><mi>ℓ</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>,</mo><msub><mrow><mi>ℓ</mi></mrow><mrow><mn>1177</mn></mrow></msub><mo>)</mo></math></span> by Führer and Tóth, and also establish <span><math><msup><mrow><mi>E</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>↛</mo><mo>(</mo><msub><mrow><mi>ℓ</mi></mrow><mrow><mn>4</mn></mrow></msub><mo>,</mo><msub><mrow><mi>ℓ</mi></mrow><mrow><mn>14</mn></mrow></msub><mo>)</mo></math></span> and <span><math><msup><mrow><mi>E</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>↛</mo><mo>(</mo><msub><mrow><mi>ℓ</mi></mrow><mrow><mn>5</mn></mrow></msub><mo>,</mo><msub><mrow><mi>ℓ</mi></mrow><mrow><mn>8</mn></mrow></msub><mo>)</mo></math></span> in the spirit of the classical result <span><math><msup><mrow><mi>E</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>↛</mo><mo>(</mo><msub><mrow><mi>ℓ</mi></mrow><mrow><mn>6</mn></mrow></msub><mo>,</mo><msub><mrow><mi>ℓ</mi></mrow><mrow><mn>6</mn></mrow></msub><mo>)</mo></math></span> due to Erdős et al. We also show a number of similar 3-coloring results, as well as <span><math><msup><mrow><mi>E</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>↛</mo><mo>(</mo><msub><mrow><mi>ℓ</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>,</mo><mi>α</mi><msub><mrow><mi>ℓ</mi></mrow><mrow><mn>6889</mn></mrow></msub><mo>)</mo></math></span>, where <em>α</em> is an arbitrary positive real number. This final result answers a question of Führer and Tóth in the positive.</div></div>","PeriodicalId":50230,"journal":{"name":"Journal of Combinatorial Theory Series A","volume":"217 ","pages":"Article 106080"},"PeriodicalIF":1.2000,"publicationDate":"2025-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Avoiding short progressions in Euclidean Ramsey theory\",\"authors\":\"Gabriel Currier , Kenneth Moore , Chi Hoi Yip\",\"doi\":\"10.1016/j.jcta.2025.106080\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We provide a general framework to construct colorings avoiding short monochromatic arithmetic progressions in Euclidean Ramsey theory. Specifically, if <span><math><msub><mrow><mi>ℓ</mi></mrow><mrow><mi>m</mi></mrow></msub></math></span> denotes <em>m</em> collinear points with consecutive points of distance one apart, we say that <span><math><msup><mrow><mi>E</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>↛</mo><mo>(</mo><msub><mrow><mi>ℓ</mi></mrow><mrow><mi>r</mi></mrow></msub><mo>,</mo><msub><mrow><mi>ℓ</mi></mrow><mrow><mi>s</mi></mrow></msub><mo>)</mo></math></span> if there is a red/blue coloring of <em>n</em>-dimensional Euclidean space that avoids red congruent copies of <span><math><msub><mrow><mi>ℓ</mi></mrow><mrow><mi>r</mi></mrow></msub></math></span> and blue congruent copies of <span><math><msub><mrow><mi>ℓ</mi></mrow><mrow><mi>s</mi></mrow></msub></math></span>. We show that <span><math><msup><mrow><mi>E</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>↛</mo><mo>(</mo><msub><mrow><mi>ℓ</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>,</mo><msub><mrow><mi>ℓ</mi></mrow><mrow><mn>20</mn></mrow></msub><mo>)</mo></math></span>, improving the best-known result <span><math><msup><mrow><mi>E</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>↛</mo><mo>(</mo><msub><mrow><mi>ℓ</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>,</mo><msub><mrow><mi>ℓ</mi></mrow><mrow><mn>1177</mn></mrow></msub><mo>)</mo></math></span> by Führer and Tóth, and also establish <span><math><msup><mrow><mi>E</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>↛</mo><mo>(</mo><msub><mrow><mi>ℓ</mi></mrow><mrow><mn>4</mn></mrow></msub><mo>,</mo><msub><mrow><mi>ℓ</mi></mrow><mrow><mn>14</mn></mrow></msub><mo>)</mo></math></span> and <span><math><msup><mrow><mi>E</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>↛</mo><mo>(</mo><msub><mrow><mi>ℓ</mi></mrow><mrow><mn>5</mn></mrow></msub><mo>,</mo><msub><mrow><mi>ℓ</mi></mrow><mrow><mn>8</mn></mrow></msub><mo>)</mo></math></span> in the spirit of the classical result <span><math><msup><mrow><mi>E</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>↛</mo><mo>(</mo><msub><mrow><mi>ℓ</mi></mrow><mrow><mn>6</mn></mrow></msub><mo>,</mo><msub><mrow><mi>ℓ</mi></mrow><mrow><mn>6</mn></mrow></msub><mo>)</mo></math></span> due to Erdős et al. We also show a number of similar 3-coloring results, as well as <span><math><msup><mrow><mi>E</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>↛</mo><mo>(</mo><msub><mrow><mi>ℓ</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>,</mo><mi>α</mi><msub><mrow><mi>ℓ</mi></mrow><mrow><mn>6889</mn></mrow></msub><mo>)</mo></math></span>, where <em>α</em> is an arbitrary positive real number. This final result answers a question of Führer and Tóth in the positive.</div></div>\",\"PeriodicalId\":50230,\"journal\":{\"name\":\"Journal of Combinatorial Theory Series A\",\"volume\":\"217 \",\"pages\":\"Article 106080\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-06-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Combinatorial Theory Series A\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0097316525000755\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Theory Series A","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0097316525000755","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
Avoiding short progressions in Euclidean Ramsey theory
We provide a general framework to construct colorings avoiding short monochromatic arithmetic progressions in Euclidean Ramsey theory. Specifically, if denotes m collinear points with consecutive points of distance one apart, we say that if there is a red/blue coloring of n-dimensional Euclidean space that avoids red congruent copies of and blue congruent copies of . We show that , improving the best-known result by Führer and Tóth, and also establish and in the spirit of the classical result due to Erdős et al. We also show a number of similar 3-coloring results, as well as , where α is an arbitrary positive real number. This final result answers a question of Führer and Tóth in the positive.
期刊介绍:
The Journal of Combinatorial Theory publishes original mathematical research concerned with theoretical and physical aspects of the study of finite and discrete structures in all branches of science. Series A is concerned primarily with structures, designs, and applications of combinatorics and is a valuable tool for mathematicians and computer scientists.