{"title":"包含2次幂的有限集合的最优结果","authors":"Quan-Hui Yang , Lilu Zhao","doi":"10.1016/j.jcta.2025.106076","DOIUrl":null,"url":null,"abstract":"<div><div>It is proved that for all sufficiently large positive integers <em>n</em>, if <span><math><mi>A</mi><mo>⊆</mo><mo>[</mo><mn>1</mn><mo>,</mo><mi>n</mi><mo>]</mo></math></span> with <span><math><mo>|</mo><mi>A</mi><mo>|</mo><mo>></mo><mfrac><mrow><mi>n</mi></mrow><mrow><mn>6</mn></mrow></mfrac><mo>+</mo><mn>2</mn></math></span> and <span><math><mrow><mi>gcd</mi><mspace></mspace></mrow><mi>A</mi><mo>=</mo><mn>1</mn></math></span>, then there exists a power of 2 which can be represented as the sum of at most 22 distinct elements of <em>A</em>. This answers a question in <span><span>[13]</span></span>. The result is optimal in two aspects. In the above conclusion, the condition <span><math><mo>|</mo><mi>A</mi><mo>|</mo><mo>></mo><mfrac><mrow><mi>n</mi></mrow><mrow><mn>6</mn></mrow></mfrac><mo>+</mo><mn>2</mn></math></span> cannot be replaced by <span><math><mo>|</mo><mi>A</mi><mo>|</mo><mo>></mo><mfrac><mrow><mi>n</mi></mrow><mrow><mn>6</mn></mrow></mfrac><mo>+</mo><mn>1</mn></math></span>, and the number 22 is also best possible.</div></div>","PeriodicalId":50230,"journal":{"name":"Journal of Combinatorial Theory Series A","volume":"217 ","pages":"Article 106076"},"PeriodicalIF":1.2000,"publicationDate":"2025-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimal result on restricted sumsets containing powers of two\",\"authors\":\"Quan-Hui Yang , Lilu Zhao\",\"doi\":\"10.1016/j.jcta.2025.106076\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>It is proved that for all sufficiently large positive integers <em>n</em>, if <span><math><mi>A</mi><mo>⊆</mo><mo>[</mo><mn>1</mn><mo>,</mo><mi>n</mi><mo>]</mo></math></span> with <span><math><mo>|</mo><mi>A</mi><mo>|</mo><mo>></mo><mfrac><mrow><mi>n</mi></mrow><mrow><mn>6</mn></mrow></mfrac><mo>+</mo><mn>2</mn></math></span> and <span><math><mrow><mi>gcd</mi><mspace></mspace></mrow><mi>A</mi><mo>=</mo><mn>1</mn></math></span>, then there exists a power of 2 which can be represented as the sum of at most 22 distinct elements of <em>A</em>. This answers a question in <span><span>[13]</span></span>. The result is optimal in two aspects. In the above conclusion, the condition <span><math><mo>|</mo><mi>A</mi><mo>|</mo><mo>></mo><mfrac><mrow><mi>n</mi></mrow><mrow><mn>6</mn></mrow></mfrac><mo>+</mo><mn>2</mn></math></span> cannot be replaced by <span><math><mo>|</mo><mi>A</mi><mo>|</mo><mo>></mo><mfrac><mrow><mi>n</mi></mrow><mrow><mn>6</mn></mrow></mfrac><mo>+</mo><mn>1</mn></math></span>, and the number 22 is also best possible.</div></div>\",\"PeriodicalId\":50230,\"journal\":{\"name\":\"Journal of Combinatorial Theory Series A\",\"volume\":\"217 \",\"pages\":\"Article 106076\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Combinatorial Theory Series A\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0097316525000718\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Theory Series A","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0097316525000718","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
Optimal result on restricted sumsets containing powers of two
It is proved that for all sufficiently large positive integers n, if with and , then there exists a power of 2 which can be represented as the sum of at most 22 distinct elements of A. This answers a question in [13]. The result is optimal in two aspects. In the above conclusion, the condition cannot be replaced by , and the number 22 is also best possible.
期刊介绍:
The Journal of Combinatorial Theory publishes original mathematical research concerned with theoretical and physical aspects of the study of finite and discrete structures in all branches of science. Series A is concerned primarily with structures, designs, and applications of combinatorics and is a valuable tool for mathematicians and computer scientists.