卢关于简单配合物谱隙猜想的证明

IF 0.9 2区 数学 Q2 MATHEMATICS
Xiongfeng Zhan, Xueyi Huang, Huiqiu Lin
{"title":"卢关于简单配合物谱隙猜想的证明","authors":"Xiongfeng Zhan,&nbsp;Xueyi Huang,&nbsp;Huiqiu Lin","doi":"10.1016/j.jcta.2025.106091","DOIUrl":null,"url":null,"abstract":"<div><div>As a generalization of graph Laplacians to higher dimensions, the combinatorial Laplacians of simplicial complexes have garnered increasing attention. Let <em>X</em> be a simplicial complex on <em>n</em> vertices, and let <span><math><mi>X</mi><mo>(</mo><mi>k</mi><mo>)</mo></math></span> denote the set of all <em>k</em>-dimensional simplices of <em>X</em>. The <em>k</em>-th spectral gap <span><math><msub><mrow><mi>μ</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>(</mo><mi>X</mi><mo>)</mo></math></span> is the smallest eigenvalue of the reduced <em>k</em>-dimensional Laplacian of <em>X</em>. For any <span><math><mi>k</mi><mo>≥</mo><mo>−</mo><mn>1</mn></math></span>, Lew (2020) <span><span>[24]</span></span> established a lower bound for <span><math><msub><mrow><mi>μ</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>(</mo><mi>X</mi><mo>)</mo></math></span>:<span><span><span><math><msub><mrow><mi>μ</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>(</mo><mi>X</mi><mo>)</mo><mo>≥</mo><mo>(</mo><mi>d</mi><mo>+</mo><mn>1</mn><mo>)</mo><mrow><mo>(</mo><munder><mi>min</mi><mrow><mi>σ</mi><mo>∈</mo><mi>X</mi><mo>(</mo><mi>k</mi><mo>)</mo></mrow></munder><mo>⁡</mo><msub><mrow><mi>deg</mi></mrow><mrow><mi>X</mi></mrow></msub><mo>⁡</mo><mo>(</mo><mi>σ</mi><mo>)</mo><mo>+</mo><mi>k</mi><mo>+</mo><mn>1</mn><mo>)</mo></mrow><mo>−</mo><mi>d</mi><mi>n</mi><mo>≥</mo><mo>(</mo><mi>d</mi><mo>+</mo><mn>1</mn><mo>)</mo><mo>(</mo><mi>k</mi><mo>+</mo><mn>1</mn><mo>)</mo><mo>−</mo><mi>d</mi><mi>n</mi><mo>,</mo></math></span></span></span> where <span><math><msub><mrow><mi>deg</mi></mrow><mrow><mi>X</mi></mrow></msub><mo>⁡</mo><mo>(</mo><mi>σ</mi><mo>)</mo></math></span> and <em>d</em> denote the degree of <em>σ</em> in <em>X</em> and the maximal dimension of a missing face of <em>X</em>, respectively. In this paper, we identify the unique simplicial complex that achieves the lower bound of the <em>k</em>-th spectral gap, <span><math><mo>(</mo><mi>d</mi><mo>+</mo><mn>1</mn><mo>)</mo><mo>(</mo><mi>k</mi><mo>+</mo><mn>1</mn><mo>)</mo><mo>−</mo><mi>d</mi><mi>n</mi></math></span>, for some <em>k</em>, thereby confirming a conjecture proposed by Lew.</div></div>","PeriodicalId":50230,"journal":{"name":"Journal of Combinatorial Theory Series A","volume":"217 ","pages":"Article 106091"},"PeriodicalIF":0.9000,"publicationDate":"2025-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Proof of Lew's conjecture on the spectral gaps of simplicial complexes\",\"authors\":\"Xiongfeng Zhan,&nbsp;Xueyi Huang,&nbsp;Huiqiu Lin\",\"doi\":\"10.1016/j.jcta.2025.106091\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>As a generalization of graph Laplacians to higher dimensions, the combinatorial Laplacians of simplicial complexes have garnered increasing attention. Let <em>X</em> be a simplicial complex on <em>n</em> vertices, and let <span><math><mi>X</mi><mo>(</mo><mi>k</mi><mo>)</mo></math></span> denote the set of all <em>k</em>-dimensional simplices of <em>X</em>. The <em>k</em>-th spectral gap <span><math><msub><mrow><mi>μ</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>(</mo><mi>X</mi><mo>)</mo></math></span> is the smallest eigenvalue of the reduced <em>k</em>-dimensional Laplacian of <em>X</em>. For any <span><math><mi>k</mi><mo>≥</mo><mo>−</mo><mn>1</mn></math></span>, Lew (2020) <span><span>[24]</span></span> established a lower bound for <span><math><msub><mrow><mi>μ</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>(</mo><mi>X</mi><mo>)</mo></math></span>:<span><span><span><math><msub><mrow><mi>μ</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>(</mo><mi>X</mi><mo>)</mo><mo>≥</mo><mo>(</mo><mi>d</mi><mo>+</mo><mn>1</mn><mo>)</mo><mrow><mo>(</mo><munder><mi>min</mi><mrow><mi>σ</mi><mo>∈</mo><mi>X</mi><mo>(</mo><mi>k</mi><mo>)</mo></mrow></munder><mo>⁡</mo><msub><mrow><mi>deg</mi></mrow><mrow><mi>X</mi></mrow></msub><mo>⁡</mo><mo>(</mo><mi>σ</mi><mo>)</mo><mo>+</mo><mi>k</mi><mo>+</mo><mn>1</mn><mo>)</mo></mrow><mo>−</mo><mi>d</mi><mi>n</mi><mo>≥</mo><mo>(</mo><mi>d</mi><mo>+</mo><mn>1</mn><mo>)</mo><mo>(</mo><mi>k</mi><mo>+</mo><mn>1</mn><mo>)</mo><mo>−</mo><mi>d</mi><mi>n</mi><mo>,</mo></math></span></span></span> where <span><math><msub><mrow><mi>deg</mi></mrow><mrow><mi>X</mi></mrow></msub><mo>⁡</mo><mo>(</mo><mi>σ</mi><mo>)</mo></math></span> and <em>d</em> denote the degree of <em>σ</em> in <em>X</em> and the maximal dimension of a missing face of <em>X</em>, respectively. In this paper, we identify the unique simplicial complex that achieves the lower bound of the <em>k</em>-th spectral gap, <span><math><mo>(</mo><mi>d</mi><mo>+</mo><mn>1</mn><mo>)</mo><mo>(</mo><mi>k</mi><mo>+</mo><mn>1</mn><mo>)</mo><mo>−</mo><mi>d</mi><mi>n</mi></math></span>, for some <em>k</em>, thereby confirming a conjecture proposed by Lew.</div></div>\",\"PeriodicalId\":50230,\"journal\":{\"name\":\"Journal of Combinatorial Theory Series A\",\"volume\":\"217 \",\"pages\":\"Article 106091\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2025-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Combinatorial Theory Series A\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S009731652500086X\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Theory Series A","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S009731652500086X","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

单纯复形的组合拉普拉斯算子作为图拉普拉斯算子在高维上的推广,越来越受到人们的关注。设X是有n个顶点的简单复形,设X(k)表示X的所有k维简单形的集合。第k个谱间隙μk(X)是X的k维拉普拉斯约简的最小特征值。对于任意k≥- 1,Lew(2020)[24]建立了μk(X)的下界:μk(X)≥(d+1)(minσ∈X(k)∑degX (σ)+k+1)−dn≥(d+1)(k+1)−dn,其中degX (σ)和d分别表示X中σ的阶数和X缺失面的最大维数。在本文中,我们确定了唯一的简单配合物,它达到k的第k谱间隙的下界,(d+1)(k+1)−dn,从而证实了Lew提出的一个猜想。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Proof of Lew's conjecture on the spectral gaps of simplicial complexes
As a generalization of graph Laplacians to higher dimensions, the combinatorial Laplacians of simplicial complexes have garnered increasing attention. Let X be a simplicial complex on n vertices, and let X(k) denote the set of all k-dimensional simplices of X. The k-th spectral gap μk(X) is the smallest eigenvalue of the reduced k-dimensional Laplacian of X. For any k1, Lew (2020) [24] established a lower bound for μk(X):μk(X)(d+1)(minσX(k)degX(σ)+k+1)dn(d+1)(k+1)dn, where degX(σ) and d denote the degree of σ in X and the maximal dimension of a missing face of X, respectively. In this paper, we identify the unique simplicial complex that achieves the lower bound of the k-th spectral gap, (d+1)(k+1)dn, for some k, thereby confirming a conjecture proposed by Lew.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.90
自引率
9.10%
发文量
94
审稿时长
12 months
期刊介绍: The Journal of Combinatorial Theory publishes original mathematical research concerned with theoretical and physical aspects of the study of finite and discrete structures in all branches of science. Series A is concerned primarily with structures, designs, and applications of combinatorics and is a valuable tool for mathematicians and computer scientists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信