变形编织排列区域的水平

IF 1.2 2区 数学 Q2 MATHEMATICS
Yanru Chen , Houshan Fu , Suijie Wang , Jinxing Yang
{"title":"变形编织排列区域的水平","authors":"Yanru Chen ,&nbsp;Houshan Fu ,&nbsp;Suijie Wang ,&nbsp;Jinxing Yang","doi":"10.1016/j.jcta.2025.106077","DOIUrl":null,"url":null,"abstract":"<div><div>This paper primarily investigates a specific type of deformation of the braid arrangement in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span>, denoted by <span><math><msubsup><mrow><mi>A</mi></mrow><mrow><mi>n</mi></mrow><mrow><mi>A</mi></mrow></msubsup></math></span>. Let <span><math><msub><mrow><mi>r</mi></mrow><mrow><mi>l</mi></mrow></msub><mo>(</mo><msubsup><mrow><mi>A</mi></mrow><mrow><mi>n</mi></mrow><mrow><mi>A</mi></mrow></msubsup><mo>)</mo></math></span> be the number of regions of level <em>l</em> in <span><math><msubsup><mrow><mi>A</mi></mrow><mrow><mi>n</mi></mrow><mrow><mi>A</mi></mrow></msubsup></math></span> and <span><math><msub><mrow><mi>R</mi></mrow><mrow><mi>l</mi></mrow></msub><mo>(</mo><mi>A</mi><mo>;</mo><mi>x</mi><mo>)</mo></math></span> the corresponding exponential generating function. Using the weighted digraph model introduced by Hetyei, we establish a bijection between regions of level <em>l</em> in <span><math><msubsup><mrow><mi>A</mi></mrow><mrow><mi>n</mi></mrow><mrow><mi>A</mi></mrow></msubsup></math></span> and valid <em>m</em>-acyclic weighted digraphs on the vertex set <span><math><mo>[</mo><mi>n</mi><mo>]</mo></math></span> with exactly <em>l</em> strong components. Based on this bijection, we obtain that the sequence <span><math><msub><mrow><mi>R</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>(</mo><mi>A</mi><mo>;</mo><mi>x</mi><mo>)</mo><mo>,</mo><msub><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>(</mo><mi>A</mi><mo>;</mo><mi>x</mi><mo>)</mo><mo>,</mo><mo>⋯</mo></math></span> is of binomial type. In addition, the values <span><math><msub><mrow><mi>r</mi></mrow><mrow><mi>l</mi></mrow></msub><mo>(</mo><msubsup><mrow><mi>A</mi></mrow><mrow><mi>n</mi></mrow><mrow><mi>A</mi></mrow></msubsup><mo>)</mo></math></span> provide a combinatorial interpretation for the coefficients when the characteristic polynomial of <span><math><msubsup><mrow><mi>A</mi></mrow><mrow><mi>n</mi></mrow><mrow><mi>A</mi></mrow></msubsup></math></span> is expanded in terms of <span><math><mo>(</mo><mtable><mtr><mtd><mi>t</mi></mtd></mtr><mtr><mtd><mi>l</mi></mtd></mtr></mtable><mo>)</mo></math></span>. In particular, if <span><math><mi>n</mi><mo>≥</mo><mn>2</mn></math></span> and <span><math><mi>A</mi><mo>=</mo><mo>[</mo><mo>−</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo>]</mo><mo>∩</mo><mi>Z</mi></math></span> for non-negative integers <em>a</em> and <em>b</em> with <span><math><mi>b</mi><mo>−</mo><mi>a</mi><mo>≥</mo><mi>n</mi><mo>−</mo><mn>1</mn></math></span>, we show that the characteristic polynomial of <span><math><msubsup><mrow><mi>A</mi></mrow><mrow><mi>n</mi></mrow><mrow><mi>A</mi></mrow></msubsup></math></span> has a single real root 0 of multiplicity one when <em>n</em> is odd, and has one more real root <span><math><mfrac><mrow><mi>n</mi><mo>(</mo><mi>a</mi><mo>+</mo><mi>b</mi><mo>+</mo><mn>1</mn><mo>)</mo></mrow><mrow><mn>2</mn></mrow></mfrac></math></span> of multiplicity one when <em>n</em> is even.</div></div>","PeriodicalId":50230,"journal":{"name":"Journal of Combinatorial Theory Series A","volume":"217 ","pages":"Article 106077"},"PeriodicalIF":1.2000,"publicationDate":"2025-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Level of regions for deformed braid arrangements\",\"authors\":\"Yanru Chen ,&nbsp;Houshan Fu ,&nbsp;Suijie Wang ,&nbsp;Jinxing Yang\",\"doi\":\"10.1016/j.jcta.2025.106077\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper primarily investigates a specific type of deformation of the braid arrangement in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span>, denoted by <span><math><msubsup><mrow><mi>A</mi></mrow><mrow><mi>n</mi></mrow><mrow><mi>A</mi></mrow></msubsup></math></span>. Let <span><math><msub><mrow><mi>r</mi></mrow><mrow><mi>l</mi></mrow></msub><mo>(</mo><msubsup><mrow><mi>A</mi></mrow><mrow><mi>n</mi></mrow><mrow><mi>A</mi></mrow></msubsup><mo>)</mo></math></span> be the number of regions of level <em>l</em> in <span><math><msubsup><mrow><mi>A</mi></mrow><mrow><mi>n</mi></mrow><mrow><mi>A</mi></mrow></msubsup></math></span> and <span><math><msub><mrow><mi>R</mi></mrow><mrow><mi>l</mi></mrow></msub><mo>(</mo><mi>A</mi><mo>;</mo><mi>x</mi><mo>)</mo></math></span> the corresponding exponential generating function. Using the weighted digraph model introduced by Hetyei, we establish a bijection between regions of level <em>l</em> in <span><math><msubsup><mrow><mi>A</mi></mrow><mrow><mi>n</mi></mrow><mrow><mi>A</mi></mrow></msubsup></math></span> and valid <em>m</em>-acyclic weighted digraphs on the vertex set <span><math><mo>[</mo><mi>n</mi><mo>]</mo></math></span> with exactly <em>l</em> strong components. Based on this bijection, we obtain that the sequence <span><math><msub><mrow><mi>R</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>(</mo><mi>A</mi><mo>;</mo><mi>x</mi><mo>)</mo><mo>,</mo><msub><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>(</mo><mi>A</mi><mo>;</mo><mi>x</mi><mo>)</mo><mo>,</mo><mo>⋯</mo></math></span> is of binomial type. In addition, the values <span><math><msub><mrow><mi>r</mi></mrow><mrow><mi>l</mi></mrow></msub><mo>(</mo><msubsup><mrow><mi>A</mi></mrow><mrow><mi>n</mi></mrow><mrow><mi>A</mi></mrow></msubsup><mo>)</mo></math></span> provide a combinatorial interpretation for the coefficients when the characteristic polynomial of <span><math><msubsup><mrow><mi>A</mi></mrow><mrow><mi>n</mi></mrow><mrow><mi>A</mi></mrow></msubsup></math></span> is expanded in terms of <span><math><mo>(</mo><mtable><mtr><mtd><mi>t</mi></mtd></mtr><mtr><mtd><mi>l</mi></mtd></mtr></mtable><mo>)</mo></math></span>. In particular, if <span><math><mi>n</mi><mo>≥</mo><mn>2</mn></math></span> and <span><math><mi>A</mi><mo>=</mo><mo>[</mo><mo>−</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo>]</mo><mo>∩</mo><mi>Z</mi></math></span> for non-negative integers <em>a</em> and <em>b</em> with <span><math><mi>b</mi><mo>−</mo><mi>a</mi><mo>≥</mo><mi>n</mi><mo>−</mo><mn>1</mn></math></span>, we show that the characteristic polynomial of <span><math><msubsup><mrow><mi>A</mi></mrow><mrow><mi>n</mi></mrow><mrow><mi>A</mi></mrow></msubsup></math></span> has a single real root 0 of multiplicity one when <em>n</em> is odd, and has one more real root <span><math><mfrac><mrow><mi>n</mi><mo>(</mo><mi>a</mi><mo>+</mo><mi>b</mi><mo>+</mo><mn>1</mn><mo>)</mo></mrow><mrow><mn>2</mn></mrow></mfrac></math></span> of multiplicity one when <em>n</em> is even.</div></div>\",\"PeriodicalId\":50230,\"journal\":{\"name\":\"Journal of Combinatorial Theory Series A\",\"volume\":\"217 \",\"pages\":\"Article 106077\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-06-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Combinatorial Theory Series A\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S009731652500072X\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Theory Series A","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S009731652500072X","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文主要研究了Rn中编织排列的一种特定变形类型,用AnA表示。设rl(AnA)为AnA中第1层区域的个数,rl(A;x)为对应的指数生成函数。利用Hetyei引入的加权有向图模型,我们在顶点集[n]上建立了AnA中第1层区域与具有1个强分量的有效m-无环加权有向图之间的双射。基于该双射,我们得到序列R1(A;x),R2(A;x),⋯是二项型。此外,当AnA的特征多项式以(tl)展开时,rl(AnA)值提供了系数的组合解释。特别地,如果n≥2且对于b−A≥n−1的非负整数A和b, A=[−A,b]∩Z,我们证明了当n为奇数时,AnA的特征多项式有一个重数为1的实根0,当n为偶数时,AnA的特征多项式还有一个重数为1的实根n(A +b+1)2。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Level of regions for deformed braid arrangements
This paper primarily investigates a specific type of deformation of the braid arrangement in Rn, denoted by AnA. Let rl(AnA) be the number of regions of level l in AnA and Rl(A;x) the corresponding exponential generating function. Using the weighted digraph model introduced by Hetyei, we establish a bijection between regions of level l in AnA and valid m-acyclic weighted digraphs on the vertex set [n] with exactly l strong components. Based on this bijection, we obtain that the sequence R1(A;x),R2(A;x), is of binomial type. In addition, the values rl(AnA) provide a combinatorial interpretation for the coefficients when the characteristic polynomial of AnA is expanded in terms of (tl). In particular, if n2 and A=[a,b]Z for non-negative integers a and b with ban1, we show that the characteristic polynomial of AnA has a single real root 0 of multiplicity one when n is odd, and has one more real root n(a+b+1)2 of multiplicity one when n is even.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.90
自引率
9.10%
发文量
94
审稿时长
12 months
期刊介绍: The Journal of Combinatorial Theory publishes original mathematical research concerned with theoretical and physical aspects of the study of finite and discrete structures in all branches of science. Series A is concerned primarily with structures, designs, and applications of combinatorics and is a valuable tool for mathematicians and computer scientists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信