{"title":"Proof of Lew's conjecture on the spectral gaps of simplicial complexes","authors":"Xiongfeng Zhan, Xueyi Huang, Huiqiu Lin","doi":"10.1016/j.jcta.2025.106091","DOIUrl":null,"url":null,"abstract":"<div><div>As a generalization of graph Laplacians to higher dimensions, the combinatorial Laplacians of simplicial complexes have garnered increasing attention. Let <em>X</em> be a simplicial complex on <em>n</em> vertices, and let <span><math><mi>X</mi><mo>(</mo><mi>k</mi><mo>)</mo></math></span> denote the set of all <em>k</em>-dimensional simplices of <em>X</em>. The <em>k</em>-th spectral gap <span><math><msub><mrow><mi>μ</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>(</mo><mi>X</mi><mo>)</mo></math></span> is the smallest eigenvalue of the reduced <em>k</em>-dimensional Laplacian of <em>X</em>. For any <span><math><mi>k</mi><mo>≥</mo><mo>−</mo><mn>1</mn></math></span>, Lew (2020) <span><span>[24]</span></span> established a lower bound for <span><math><msub><mrow><mi>μ</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>(</mo><mi>X</mi><mo>)</mo></math></span>:<span><span><span><math><msub><mrow><mi>μ</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>(</mo><mi>X</mi><mo>)</mo><mo>≥</mo><mo>(</mo><mi>d</mi><mo>+</mo><mn>1</mn><mo>)</mo><mrow><mo>(</mo><munder><mi>min</mi><mrow><mi>σ</mi><mo>∈</mo><mi>X</mi><mo>(</mo><mi>k</mi><mo>)</mo></mrow></munder><mo></mo><msub><mrow><mi>deg</mi></mrow><mrow><mi>X</mi></mrow></msub><mo></mo><mo>(</mo><mi>σ</mi><mo>)</mo><mo>+</mo><mi>k</mi><mo>+</mo><mn>1</mn><mo>)</mo></mrow><mo>−</mo><mi>d</mi><mi>n</mi><mo>≥</mo><mo>(</mo><mi>d</mi><mo>+</mo><mn>1</mn><mo>)</mo><mo>(</mo><mi>k</mi><mo>+</mo><mn>1</mn><mo>)</mo><mo>−</mo><mi>d</mi><mi>n</mi><mo>,</mo></math></span></span></span> where <span><math><msub><mrow><mi>deg</mi></mrow><mrow><mi>X</mi></mrow></msub><mo></mo><mo>(</mo><mi>σ</mi><mo>)</mo></math></span> and <em>d</em> denote the degree of <em>σ</em> in <em>X</em> and the maximal dimension of a missing face of <em>X</em>, respectively. In this paper, we identify the unique simplicial complex that achieves the lower bound of the <em>k</em>-th spectral gap, <span><math><mo>(</mo><mi>d</mi><mo>+</mo><mn>1</mn><mo>)</mo><mo>(</mo><mi>k</mi><mo>+</mo><mn>1</mn><mo>)</mo><mo>−</mo><mi>d</mi><mi>n</mi></math></span>, for some <em>k</em>, thereby confirming a conjecture proposed by Lew.</div></div>","PeriodicalId":50230,"journal":{"name":"Journal of Combinatorial Theory Series A","volume":"217 ","pages":"Article 106091"},"PeriodicalIF":0.9000,"publicationDate":"2025-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Theory Series A","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S009731652500086X","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
As a generalization of graph Laplacians to higher dimensions, the combinatorial Laplacians of simplicial complexes have garnered increasing attention. Let X be a simplicial complex on n vertices, and let denote the set of all k-dimensional simplices of X. The k-th spectral gap is the smallest eigenvalue of the reduced k-dimensional Laplacian of X. For any , Lew (2020) [24] established a lower bound for : where and d denote the degree of σ in X and the maximal dimension of a missing face of X, respectively. In this paper, we identify the unique simplicial complex that achieves the lower bound of the k-th spectral gap, , for some k, thereby confirming a conjecture proposed by Lew.
期刊介绍:
The Journal of Combinatorial Theory publishes original mathematical research concerned with theoretical and physical aspects of the study of finite and discrete structures in all branches of science. Series A is concerned primarily with structures, designs, and applications of combinatorics and is a valuable tool for mathematicians and computer scientists.