{"title":"On quantitative self-duality of super weakly compact operators","authors":"Kun Tu","doi":"10.1016/j.jmaa.2025.129568","DOIUrl":"10.1016/j.jmaa.2025.129568","url":null,"abstract":"<div><div>It is well known that a bounded linear operator <em>T</em> between Banach spaces <em>X</em> and <em>Y</em> is super weakly compact if and only if so is its dual <span><math><msup><mrow><mi>T</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span>. We study the quantitative version of this implication. The paper contains a counterexample showing that the super weak essential norms of a bounded linear operator and its dual are not equivalent. In detail, we construct a sequence of bounded linear operators <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>:</mo><mi>X</mi><mo>→</mo><mi>Y</mi></math></span> so that the quotient norm <span><math><msub><mrow><mo>‖</mo><msub><mrow><mi>T</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>‖</mo></mrow><mrow><mi>S</mi></mrow></msub></math></span> induced by <span><math><mi>L</mi><mo>(</mo><mi>X</mi><mo>,</mo><mi>Y</mi><mo>)</mo><mo>/</mo><mi>S</mi><mo>(</mo><mi>X</mi><mo>,</mo><mi>Y</mi><mo>)</mo></math></span> is not equivalent to <span><math><msub><mrow><mo>‖</mo><msubsup><mrow><mi>T</mi></mrow><mrow><mi>n</mi></mrow><mrow><mo>⁎</mo></mrow></msubsup><mo>‖</mo></mrow><mrow><mi>S</mi></mrow></msub></math></span> induced by <span><math><mi>L</mi><mo>(</mo><msup><mrow><mi>Y</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mo>,</mo><msup><mrow><mi>X</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mo>)</mo><mo>/</mo><mi>S</mi><mo>(</mo><msup><mrow><mi>Y</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mo>,</mo><msup><mrow><mi>X</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mo>)</mo></math></span>. Above <span><math><mi>L</mi><mo>(</mo><mi>X</mi><mo>,</mo><mi>Y</mi><mo>)</mo></math></span> and <span><math><mi>S</mi><mo>(</mo><mi>X</mi><mo>,</mo><mi>Y</mi><mo>)</mo></math></span> stand for the collections of bounded linear operators and super weakly compact operators between <em>X</em> and <em>Y</em>, respectively. Our counterexample is derived from the Johnson-Lindenstrauss space.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"549 2","pages":"Article 129568"},"PeriodicalIF":1.2,"publicationDate":"2025-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143817611","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"J-contractive operator valued functions, vector valued de Branges spaces and functional models","authors":"Bharti Garg, Santanu Sarkar","doi":"10.1016/j.jmaa.2025.129564","DOIUrl":"10.1016/j.jmaa.2025.129564","url":null,"abstract":"<div><div>The aim of this paper is to study the vector valued de Branges spaces, which are based on <em>J</em>-contractive operator valued analytic functions, and to explore their role in the functional models for simple, closed, densely defined, symmetric operators with infinite deficiency indices.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"549 2","pages":"Article 129564"},"PeriodicalIF":1.2,"publicationDate":"2025-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143817612","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Dragana Jankov Maširević , Tibor K. Pogány , Nataša Ujić
{"title":"Observations on the McKay Iν Bessel distribution II","authors":"Dragana Jankov Maširević , Tibor K. Pogány , Nataša Ujić","doi":"10.1016/j.jmaa.2025.129569","DOIUrl":"10.1016/j.jmaa.2025.129569","url":null,"abstract":"<div><div>Motivated by a wide spectrum of possible applications of the McKay <span><math><msub><mrow><mi>I</mi></mrow><mrow><mi>ν</mi></mrow></msub></math></span> Bessel distribution we aim to present two new formulae for the appropriate distribution function, using the mean–value theorems for integrals: one of Bonnet type and another relying on the stronger version of the Okamura's variant of the second integral mean–value theorem. In both of those results, a point, characteristic for the mean–value theorems, is explicitly presented in terms of the Lambert <em>W</em> function. In addition, the computational efficiency of the newly derived formulae <em>versus</em> initial definition of the mentioned cumulative distribution function is established and the count data problem is resolved for this probability law.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"550 2","pages":"Article 129569"},"PeriodicalIF":1.2,"publicationDate":"2025-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143825914","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The generalized Pohozaev-Schoen identity for asymptotically hyperbolic manifolds and its applications","authors":"Yaohua Wang","doi":"10.1016/j.jmaa.2025.129565","DOIUrl":"10.1016/j.jmaa.2025.129565","url":null,"abstract":"<div><div>In this paper, we establish the generalized Pohozaev-Schoen identity for asymptotically hyperbolic manifolds. As an application, we consider the Einstein-type asymptotically hyperbolic manifolds, especially the case with static potentials. We also consider its application to the asymptotically hyperbolic manifold with <em>B</em>-generalized soliton structure and derive some rigidity result when it admits an almost Ricci soliton structure.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"550 2","pages":"Article 129565"},"PeriodicalIF":1.2,"publicationDate":"2025-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143814842","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Isometric embeddings of Teichmüller spaces don't extend to the Gardiner-Masur compactification","authors":"Yaozhong Shi , Wen Yang","doi":"10.1016/j.jmaa.2025.129566","DOIUrl":"10.1016/j.jmaa.2025.129566","url":null,"abstract":"<div><div>It is known that a finitely unbranched covering <span><math><mi>π</mi><mo>:</mo><mover><mrow><mi>S</mi></mrow><mrow><mo>˜</mo></mrow></mover><mo>→</mo><mi>S</mi></math></span> between two closed Riemann surfaces induces an isometric embedding <span><math><msub><mrow><mi>ϕ</mi></mrow><mrow><mi>π</mi></mrow></msub><mo>:</mo><mi>T</mi><mo>(</mo><mi>S</mi><mo>)</mo><mo>→</mo><mi>T</mi><mo>(</mo><mover><mrow><mi>S</mi></mrow><mrow><mo>˜</mo></mrow></mover><mo>)</mo></math></span> between the corresponding Teichmüller spaces. We prove that if <em>π</em> is not a homeomorphism, then the induced isometric embedding <span><math><msub><mrow><mi>ϕ</mi></mrow><mrow><mi>π</mi></mrow></msub><mo>:</mo><mi>T</mi><mo>(</mo><mi>S</mi><mo>)</mo><mo>→</mo><mi>T</mi><mo>(</mo><mover><mrow><mi>S</mi></mrow><mrow><mo>˜</mo></mrow></mover><mo>)</mo></math></span> doesn't extend continuously to the Gardiner-Masur compactification of the Teichmüller space, in contrast to the case of Thurston compactification and the case of augmented Teichmüller space.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"550 2","pages":"Article 129566"},"PeriodicalIF":1.2,"publicationDate":"2025-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143807745","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A free boundary problem for a nonlocal diffusion competition model with unbounded free boundaries","authors":"Tong Wang , Zhenzhen Li , Binxiang Dai","doi":"10.1016/j.jmaa.2025.129567","DOIUrl":"10.1016/j.jmaa.2025.129567","url":null,"abstract":"<div><div>This paper is devoted to the study of a nonlocal diffusion competition model with unbounded free boundaries. It is assumed that two competing species initially occupy their respective unbounded habitats and exhibit a tendency to expand with a free boundary. As time progresses, the habitats of these two species gradually overlap, giving rise to competition within the shared habitat. For this free boundary problem with nonlocal diffusion, we establish the global existence and uniqueness of the solution and prove the spreading-vanishing dichotomy. Further, the asymptotic spreading speed is also determined.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"550 2","pages":"Article 129567"},"PeriodicalIF":1.2,"publicationDate":"2025-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143814843","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Positive solutions of some nonlinear eigenvalue problems in exterior domains","authors":"Bilel Khamessi , Noureddine Zeddini","doi":"10.1016/j.jmaa.2025.129562","DOIUrl":"10.1016/j.jmaa.2025.129562","url":null,"abstract":"<div><div>In this paper, we give a characterization that enables us to redefine the Kato class of potential functions <span><math><msub><mrow><mi>K</mi></mrow><mrow><mo>∞</mo></mrow></msub><mo>(</mo><mi>D</mi><mo>)</mo></math></span>, on an exterior domain <em>D</em> with <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>1</mn><mo>,</mo><mn>1</mn></mrow></msup></math></span>-boundary, studied in <span><span>[11]</span></span>. Next, we consider a class of semilinear elliptic system of type <span><math><mi>Δ</mi><mi>u</mi><mo>=</mo><mi>λ</mi><mspace></mspace><mi>F</mi><mo>(</mo><mi>x</mi><mo>,</mo><mi>u</mi><mo>,</mo><mi>v</mi><mo>)</mo></math></span>, <span><math><mi>Δ</mi><mi>v</mi><mo>=</mo><mi>μ</mi><mspace></mspace><mi>H</mi><mo>(</mo><mi>x</mi><mo>,</mo><mi>u</mi><mo>,</mo><mi>v</mi><mo>)</mo></math></span>, for some nonnegative nonlinearities <em>F</em> and <em>H</em> and positive constants <em>λ</em> and <em>μ</em>. Under adequate conditions on <em>F</em> and <em>H</em>, related to <span><math><msub><mrow><mi>K</mi></mrow><mrow><mo>∞</mo></mrow></msub><mo>(</mo><mi>D</mi><mo>)</mo></math></span>, we prove the existence of positive solutions continuous on <span><math><mover><mrow><mi>D</mi></mrow><mo>‾</mo></mover></math></span>, for <span><math><mi>λ</mi><mo>∈</mo><mo>[</mo><mn>0</mn><mo>,</mo><msub><mrow><mi>λ</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>)</mo></math></span> and <span><math><mi>μ</mi><mo>∈</mo><mo>[</mo><mn>0</mn><mo>,</mo><msub><mrow><mi>μ</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>)</mo></math></span> for some <span><math><msub><mrow><mi>λ</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>,</mo><msub><mrow><mi>μ</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>∈</mo><mo>(</mo><mn>0</mn><mo>,</mo><mo>∞</mo><mo>]</mo></math></span>, whenever some conditions on the finite boundary and the infinite boundary are given.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"549 2","pages":"Article 129562"},"PeriodicalIF":1.2,"publicationDate":"2025-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143834391","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Representations of cones and applications to decision theory","authors":"Paolo Leonetti , Giulio Principi","doi":"10.1016/j.jmaa.2025.129561","DOIUrl":"10.1016/j.jmaa.2025.129561","url":null,"abstract":"<div><div>Let <em>C</em> be a cone in a locally convex Hausdorff topological vector space <em>X</em> containing 0. We show that there exists a (essentially unique) nonempty family <span><math><mi>K</mi></math></span> of nonempty subsets of the topological dual <span><math><msup><mrow><mi>X</mi></mrow><mrow><mo>′</mo></mrow></msup></math></span> such that<span><span><span><math><mi>C</mi><mo>=</mo><mo>{</mo><mi>x</mi><mo>∈</mo><mi>X</mi><mo>:</mo><mo>∀</mo><mi>K</mi><mo>∈</mo><mi>K</mi><mo>,</mo><mo>∃</mo><mi>f</mi><mo>∈</mo><mi>K</mi><mo>,</mo><mspace></mspace><mspace></mspace><mi>f</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>≥</mo><mn>0</mn><mo>}</mo><mo>.</mo></math></span></span></span> Then, we identify the additional properties on the family <span><math><mi>K</mi></math></span> which characterize, among others, closed convex cones, open convex cones, closed cones, and convex cones. For instance, if <em>X</em> is a Banach space, then <em>C</em> is a closed cone if and only if the family <span><math><mi>K</mi></math></span> can be chosen with nonempty convex compact sets. These representations provide abstract versions of several recent results in decision theory and give us the proper framework to obtain new ones. This allows us to characterize preorders which satisfy the independence axiom over certain probability measures, answering an open question in Hara et al. (2019) <span><span>[20]</span></span>.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"550 2","pages":"Article 129561"},"PeriodicalIF":1.2,"publicationDate":"2025-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143826032","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Shrinking Ricci solitons and homology n-spheres","authors":"Chandan Kumar Mondal","doi":"10.1016/j.jmaa.2025.129560","DOIUrl":"10.1016/j.jmaa.2025.129560","url":null,"abstract":"<div><div>In this short note, we find a sufficient curvature condition for a compact, orientable, shrinking Ricci soliton to become an n-homology sphere.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"550 2","pages":"Article 129560"},"PeriodicalIF":1.2,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143799662","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Geometric nonlinear classification of Lp(μ)-spaces","authors":"Ryotaro Tanaka","doi":"10.1016/j.jmaa.2025.129559","DOIUrl":"10.1016/j.jmaa.2025.129559","url":null,"abstract":"<div><div>In this paper, we study nonlinear classification of Banach spaces with respect to geometric structure spaces. We mainly give classification results on the family of Banach spaces <span><math><mo>{</mo><msub><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msub><mo>(</mo><mi>μ</mi><mo>)</mo><mo>:</mo><mi>p</mi><mo>∈</mo><mo>[</mo><mn>1</mn><mo>,</mo><mo>∞</mo><mo>]</mo><mo>}</mo></math></span> for a localizable measure <em>μ</em>, which extend the known results on <span><math><msub><mrow><mi>ℓ</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span>-spaces. It turns out that <span><math><msub><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msub><mo>(</mo><mi>μ</mi><mo>)</mo></math></span>-spaces are completely classified by their geometric structure spaces in the infinite-dimensional and localizable case, and that <span><math><msub><mrow><mi>ℓ</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span> and <span><math><msub><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span> have mutually different geometric structure spaces. Since geometric structure spaces of Banach spaces are invariants of Birkhoff-James orthogonality preservers, the main results in this paper apply to classifying <span><math><msub><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msub><mo>(</mo><mi>μ</mi><mo>)</mo></math></span>-spaces with respect to the structure of Birkhoff-James orthogonality.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"550 2","pages":"Article 129559"},"PeriodicalIF":1.2,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143807742","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}