Journal of Mathematical Analysis and Applications最新文献

筛选
英文 中文
Locally constrained flows and geometric inequalities in spheres 局部受限流动和球体中的几何不等式
IF 1.2 3区 数学
Journal of Mathematical Analysis and Applications Pub Date : 2025-05-14 DOI: 10.1016/j.jmaa.2025.129689
Shanwei Ding, Guanghan Li
{"title":"Locally constrained flows and geometric inequalities in spheres","authors":"Shanwei Ding,&nbsp;Guanghan Li","doi":"10.1016/j.jmaa.2025.129689","DOIUrl":"10.1016/j.jmaa.2025.129689","url":null,"abstract":"<div><div>In this paper, we unveil a captivating algebraic property of an elementary symmetric polynomial. Based on this property, we establish the longtime existence and convergence of a locally constrained flow, thereby deriving some families of geometric inequalities in sphere. Additionally, we demonstrate a novel family of “three terms” geometric inequalities involving two weighted curvature integrals and one quermassintegral. Unlike the case in hyperbolic spaces, a family of inverse weighted geometric inequalities hold in spheres.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"551 2","pages":"Article 129689"},"PeriodicalIF":1.2,"publicationDate":"2025-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144105149","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Arithmetic properties of k-tuple ℓ-regular partitions k元组正则分区的算术性质
IF 1.2 3区 数学
Journal of Mathematical Analysis and Applications Pub Date : 2025-05-14 DOI: 10.1016/j.jmaa.2025.129688
Hemjyoti Nath , Manjil P. Saikia , Abhishek Sarma
{"title":"Arithmetic properties of k-tuple ℓ-regular partitions","authors":"Hemjyoti Nath ,&nbsp;Manjil P. Saikia ,&nbsp;Abhishek Sarma","doi":"10.1016/j.jmaa.2025.129688","DOIUrl":"10.1016/j.jmaa.2025.129688","url":null,"abstract":"<div><div>In this paper, we study arithmetic properties satisfied by the <em>k</em>-tuple <em>ℓ</em>-regular partitions. A <em>k</em>-tuple of partitions <span><math><mo>(</mo><msub><mrow><mi>ξ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>ξ</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>ξ</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>)</mo></math></span> is said to be <em>ℓ</em>-regular if all the <span><math><msub><mrow><mi>ξ</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span>'s are <em>ℓ</em>-regular. We study the cases <span><math><mo>(</mo><mi>ℓ</mi><mo>,</mo><mi>k</mi><mo>)</mo><mo>=</mo><mo>(</mo><mn>2</mn><mo>,</mo><mn>3</mn><mo>)</mo><mo>,</mo><mo>(</mo><mn>4</mn><mo>,</mo><mn>3</mn><mo>)</mo><mo>,</mo><mo>(</mo><mi>ℓ</mi><mo>,</mo><mi>p</mi><mo>)</mo></math></span>, where <em>p</em> is a prime, and even the general case when both <em>ℓ</em> and <em>k</em> are unrestricted. Using elementary means as well as the theory of modular forms we prove several infinite family of congruences and density results for this family of partitions.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"551 2","pages":"Article 129688"},"PeriodicalIF":1.2,"publicationDate":"2025-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144105155","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Distribution of θ-powers and their sums θ-次幂及其和的分布
IF 1.2 3区 数学
Journal of Mathematical Analysis and Applications Pub Date : 2025-05-13 DOI: 10.1016/j.jmaa.2025.129672
Siddharth Iyer
{"title":"Distribution of θ-powers and their sums","authors":"Siddharth Iyer","doi":"10.1016/j.jmaa.2025.129672","DOIUrl":"10.1016/j.jmaa.2025.129672","url":null,"abstract":"<div><div>We refine a remark of Steinerberger (2024), proving that for <span><math><mi>α</mi><mo>∈</mo><mi>R</mi></math></span>, there exist integers <span><math><mn>1</mn><mo>≤</mo><msub><mrow><mi>b</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>b</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>≤</mo><mi>n</mi></math></span> such that<span><span><span><math><mrow><mo>‖</mo><munderover><mo>∑</mo><mrow><mi>j</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>k</mi></mrow></munderover><msqrt><mrow><msub><mrow><mi>b</mi></mrow><mrow><mi>j</mi></mrow></msub></mrow></msqrt><mo>−</mo><mi>α</mi><mo>‖</mo></mrow><mo>=</mo><mi>O</mi><mo>(</mo><msup><mrow><mi>n</mi></mrow><mrow><mo>−</mo><msub><mrow><mi>γ</mi></mrow><mrow><mi>k</mi></mrow></msub></mrow></msup><mo>)</mo><mo>,</mo></math></span></span></span> where <span><math><msub><mrow><mi>γ</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>≥</mo><mo>(</mo><mi>k</mi><mo>−</mo><mn>1</mn><mo>)</mo><mo>/</mo><mn>4</mn></math></span>, <span><math><msub><mrow><mi>γ</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>=</mo><mn>1</mn></math></span>, and <span><math><msub><mrow><mi>γ</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>=</mo><mi>k</mi><mo>/</mo><mn>2</mn></math></span> for <span><math><mi>k</mi><mo>=</mo><msup><mrow><mn>2</mn></mrow><mrow><mi>m</mi></mrow></msup><mo>−</mo><mn>1</mn></math></span>. We extend this to higher-order roots. Building on the Bambah–Chowla theorem, we study gaps in <span><math><mo>{</mo><msup><mrow><mi>x</mi></mrow><mrow><mi>θ</mi></mrow></msup><mo>+</mo><msup><mrow><mi>y</mi></mrow><mrow><mi>θ</mi></mrow></msup><mo>:</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>∈</mo><mi>N</mi><mo>∪</mo><mo>{</mo><mn>0</mn><mo>}</mo><mo>}</mo></math></span>, yielding a modulo one result with <span><math><msub><mrow><mi>γ</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>=</mo><mn>1</mn></math></span> and bounded gaps for <span><math><mi>θ</mi><mo>=</mo><mn>3</mn><mo>/</mo><mn>2</mn></math></span>. We also establish a metric result for general <span><math><mi>θ</mi><mo>&gt;</mo><mn>0</mn></math></span> and identify exceptional values, thereby resolving a question of Dubickas (2024).</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"551 1","pages":"Article 129672"},"PeriodicalIF":1.2,"publicationDate":"2025-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144083780","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Perturbation limiting behaviors of ground states to the Kirchhoff equation with combined power-type nonlinearities 组合幂型非线性Kirchhoff方程基态的微扰极限行为
IF 1.2 3区 数学
Journal of Mathematical Analysis and Applications Pub Date : 2025-05-13 DOI: 10.1016/j.jmaa.2025.129677
Deke Li
{"title":"Perturbation limiting behaviors of ground states to the Kirchhoff equation with combined power-type nonlinearities","authors":"Deke Li","doi":"10.1016/j.jmaa.2025.129677","DOIUrl":"10.1016/j.jmaa.2025.129677","url":null,"abstract":"&lt;div&gt;&lt;div&gt;In this paper, we consider the Kirchhoff-type equation with combined power-type nonlinearities:&lt;span&gt;&lt;span&gt;&lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mtable&gt;&lt;mtr&gt;&lt;mtd&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;a&lt;/mi&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;mi&gt;b&lt;/mi&gt;&lt;munder&gt;&lt;mo&gt;∫&lt;/mo&gt;&lt;mrow&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;R&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;N&lt;/mi&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/mrow&gt;&lt;/munder&gt;&lt;mo&gt;|&lt;/mo&gt;&lt;mi&gt;∇&lt;/mi&gt;&lt;mi&gt;u&lt;/mi&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mo&gt;|&lt;/mo&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;mi&gt;d&lt;/mi&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mi&gt;Δ&lt;/mi&gt;&lt;mi&gt;u&lt;/mi&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mi&gt;λ&lt;/mi&gt;&lt;mi&gt;u&lt;/mi&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;mo&gt;|&lt;/mo&gt;&lt;mi&gt;u&lt;/mi&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mo&gt;|&lt;/mo&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;p&lt;/mi&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mi&gt;u&lt;/mi&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mi&gt;ε&lt;/mi&gt;&lt;mo&gt;|&lt;/mo&gt;&lt;mi&gt;u&lt;/mi&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mo&gt;|&lt;/mo&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;q&lt;/mi&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mi&gt;u&lt;/mi&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;mtext&gt;in &lt;/mtext&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;R&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;N&lt;/mi&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;/mtd&gt;&lt;/mtr&gt;&lt;/mtable&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;&lt;/span&gt;&lt;/span&gt; where &lt;span&gt;&lt;math&gt;&lt;mi&gt;a&lt;/mi&gt;&lt;mo&gt;&gt;&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/math&gt;&lt;/span&gt;, &lt;span&gt;&lt;math&gt;&lt;mi&gt;b&lt;/mi&gt;&lt;mo&gt;&gt;&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/math&gt;&lt;/span&gt;, &lt;span&gt;&lt;math&gt;&lt;mi&gt;ε&lt;/mi&gt;&lt;mo&gt;&gt;&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/math&gt;&lt;/span&gt; are constants, &lt;span&gt;&lt;math&gt;&lt;mi&gt;λ&lt;/mi&gt;&lt;mo&gt;∈&lt;/mo&gt;&lt;mi&gt;R&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;, &lt;span&gt;&lt;math&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mo&gt;≤&lt;/mo&gt;&lt;mi&gt;N&lt;/mi&gt;&lt;mo&gt;≤&lt;/mo&gt;&lt;mn&gt;3&lt;/mn&gt;&lt;/math&gt;&lt;/span&gt; and &lt;span&gt;&lt;math&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;mo&gt;&lt;&lt;/mo&gt;&lt;mi&gt;p&lt;/mi&gt;&lt;mo&gt;&lt;&lt;/mo&gt;&lt;mi&gt;q&lt;/mi&gt;&lt;mo&gt;&lt;&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;⁎&lt;/mo&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/math&gt;&lt;/span&gt;. We mainly focus on the existence and perturbation limit behaviors of ground states &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;u&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;ε&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;ρ&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt;, where &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;u&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;ε&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;ρ&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt; is radially symmetric-decreasing and &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mo&gt;∫&lt;/mo&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;R&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;N&lt;/mi&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;|&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;u&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;ε&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;ρ&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mo&gt;|&lt;/mo&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;mi&gt;d&lt;/mi&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mi&gt;ρ&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;. Firstly, we prove the existence and nonexistence of ground states by using the concentration-compactness principle. Secondly, we characterize the perturbation limit behaviors of ground states &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;u&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;ε&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;ρ&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt; as &lt;span&gt;&lt;math&gt;&lt;mi&gt;ε&lt;/mi&gt;&lt;mo&gt;→&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/math&gt;&lt;/span&gt; and find that the blow-up phenomenon happens for &lt;span&gt;&lt;math&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;mn&gt;8&lt;/mn&gt;&lt;mo&gt;/&lt;/mo&gt;&lt;mi&gt;N&lt;/mi&gt;&lt;mo&gt;≤&lt;/mo&gt;&lt;mi&gt;p&lt;/mi&gt;&lt;mo&gt;&lt;&lt;/mo&gt;&lt;mi&gt;q&lt;/mi&gt;&lt;mo&gt;&lt;&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;⁎&lt;/mo&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/math&gt;&lt;/span&gt; and &lt;span&gt;&lt;math&gt;&lt;mi&gt;ρ&lt;/mi&gt;&lt;mo&gt;&gt;&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;ρ&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;c&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt; in the sense that &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;lim&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;ε&lt;/mi&gt;&lt;mo&gt;→&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/mro","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"551 1","pages":"Article 129677"},"PeriodicalIF":1.2,"publicationDate":"2025-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144068781","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Kernel theorems for operators on co-orbit spaces associated with localised frames 与局域坐标系相关的共轨道空间算子的核定理
IF 1.2 3区 数学
Journal of Mathematical Analysis and Applications Pub Date : 2025-05-13 DOI: 10.1016/j.jmaa.2025.129678
Dimitri Bytchenkoff , Michael Speckbacher , Peter Balazs
{"title":"Kernel theorems for operators on co-orbit spaces associated with localised frames","authors":"Dimitri Bytchenkoff ,&nbsp;Michael Speckbacher ,&nbsp;Peter Balazs","doi":"10.1016/j.jmaa.2025.129678","DOIUrl":"10.1016/j.jmaa.2025.129678","url":null,"abstract":"<div><div>Kernel theorems provide a convenient representation of bounded linear operators. For the operator acting on a concrete function space, this means that its action on any element of the space can be expressed as a generalised integral operator, in a way reminiscent of the matrix representation of linear operators acting on finite dimensional vector spaces. We prove kernel theorems for bounded linear operators acting on co-orbit spaces associated with localised frames. Our two main results characterise the spaces of operators whose generalised integral kernels belong to the co-orbit spaces of test functions and distributions associated with the tensor product of the localised frames respectively. Moreover, using a version of Schur's test, we establish a characterisation of the bounded linear operators between some specific co-orbit spaces and kernels in mixed-norm co-orbit spaces.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"551 1","pages":"Article 129678"},"PeriodicalIF":1.2,"publicationDate":"2025-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144068780","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sobolev and Hölder estimates for the ∂‾ equation on pseudoconvex domains of finite type in C2 C2中有限型伪凸域上∂∂∂方程的Sobolev估计和Hölder估计
IF 1.2 3区 数学
Journal of Mathematical Analysis and Applications Pub Date : 2025-05-13 DOI: 10.1016/j.jmaa.2025.129638
Ziming Shi
{"title":"Sobolev and Hölder estimates for the ∂‾ equation on pseudoconvex domains of finite type in C2","authors":"Ziming Shi","doi":"10.1016/j.jmaa.2025.129638","DOIUrl":"10.1016/j.jmaa.2025.129638","url":null,"abstract":"<div><div>We prove a homotopy formula which yields almost sharp estimates in all (positive-indexed) Sobolev and Hölder-Zygmund spaces for the <span><math><mover><mrow><mo>∂</mo></mrow><mo>‾</mo></mover></math></span> equation on pseudoconvex domains of finite type in <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>, extending the earlier results of Fefferman-Kohn (1988), Range (1990), and Chang-Nagel-Stein (1992). The main novelty of our proof is the construction of holomorphic support functions that admit precise estimates when the parameter variable lies in a thin shell outside the domain.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"551 1","pages":"Article 129638"},"PeriodicalIF":1.2,"publicationDate":"2025-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144147965","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On a product of three theta functions and the number of representations of integers as mixed ternary sums involving squares, triangular, pentagonal and octagonal numbers 关于三个函数的乘积和整数的表示形式的数量,包括平方,三角形,五边形和八边形数的混合三元和
IF 1.2 3区 数学
Journal of Mathematical Analysis and Applications Pub Date : 2025-05-13 DOI: 10.1016/j.jmaa.2025.129676
Nasser Abdo Saeed Bulkhali , Gedela Kavya Keerthana , Ranganatha Dasappa
{"title":"On a product of three theta functions and the number of representations of integers as mixed ternary sums involving squares, triangular, pentagonal and octagonal numbers","authors":"Nasser Abdo Saeed Bulkhali ,&nbsp;Gedela Kavya Keerthana ,&nbsp;Ranganatha Dasappa","doi":"10.1016/j.jmaa.2025.129676","DOIUrl":"10.1016/j.jmaa.2025.129676","url":null,"abstract":"<div><div>In this paper, we derive a general formula to express the product of three theta functions as a linear combination of other products of three theta functions. Moreover, we use the main formula to deduce a general formula for the product of two theta functions. Furthermore, as applications, we extract several theorems in the theory of representation of integers as mixed ternary sums involving squares, triangular numbers, generalized pentagonal numbers and generalized octagonal numbers.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"551 2","pages":"Article 129676"},"PeriodicalIF":1.2,"publicationDate":"2025-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144090558","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fractional Hardy's inequality for half-spaces in the Heisenberg group Heisenberg群中半空间的分数阶Hardy不等式
IF 1.2 3区 数学
Journal of Mathematical Analysis and Applications Pub Date : 2025-05-13 DOI: 10.1016/j.jmaa.2025.129674
Rama Rawat, Haripada Roy
{"title":"Fractional Hardy's inequality for half-spaces in the Heisenberg group","authors":"Rama Rawat,&nbsp;Haripada Roy","doi":"10.1016/j.jmaa.2025.129674","DOIUrl":"10.1016/j.jmaa.2025.129674","url":null,"abstract":"&lt;div&gt;&lt;div&gt;We establish the following fractional Hardy's inequality&lt;span&gt;&lt;span&gt;&lt;span&gt;&lt;math&gt;&lt;munder&gt;&lt;mo&gt;∫&lt;/mo&gt;&lt;mrow&gt;&lt;msubsup&gt;&lt;mrow&gt;&lt;mi&gt;H&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;/msubsup&gt;&lt;/mrow&gt;&lt;/munder&gt;&lt;mfrac&gt;&lt;mrow&gt;&lt;mo&gt;|&lt;/mo&gt;&lt;mi&gt;f&lt;/mi&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;ξ&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mo&gt;|&lt;/mo&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;p&lt;/mi&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;msubsup&gt;&lt;mrow&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;s&lt;/mi&gt;&lt;mi&gt;p&lt;/mi&gt;&lt;/mrow&gt;&lt;/msubsup&gt;&lt;mo&gt;|&lt;/mo&gt;&lt;mi&gt;z&lt;/mi&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mo&gt;|&lt;/mo&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;α&lt;/mi&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/mrow&gt;&lt;/mfrac&gt;&lt;mi&gt;d&lt;/mi&gt;&lt;mi&gt;ξ&lt;/mi&gt;&lt;mo&gt;≤&lt;/mo&gt;&lt;mi&gt;C&lt;/mi&gt;&lt;munder&gt;&lt;mo&gt;∫&lt;/mo&gt;&lt;mrow&gt;&lt;msubsup&gt;&lt;mrow&gt;&lt;mi&gt;H&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;/msubsup&gt;&lt;/mrow&gt;&lt;/munder&gt;&lt;munder&gt;&lt;mo&gt;∫&lt;/mo&gt;&lt;mrow&gt;&lt;msubsup&gt;&lt;mrow&gt;&lt;mi&gt;H&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;/msubsup&gt;&lt;/mrow&gt;&lt;/munder&gt;&lt;mfrac&gt;&lt;mrow&gt;&lt;mo&gt;|&lt;/mo&gt;&lt;mi&gt;f&lt;/mi&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;ξ&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mi&gt;f&lt;/mi&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;ξ&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;′&lt;/mo&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mo&gt;|&lt;/mo&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;p&lt;/mi&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;d&lt;/mi&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;ξ&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;∘&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;ξ&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;′&lt;/mo&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;Q&lt;/mi&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;mi&gt;s&lt;/mi&gt;&lt;mi&gt;p&lt;/mi&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;|&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;z&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;′&lt;/mo&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mi&gt;z&lt;/mi&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mo&gt;|&lt;/mo&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;α&lt;/mi&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/mrow&gt;&lt;/mfrac&gt;&lt;mi&gt;d&lt;/mi&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;ξ&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;′&lt;/mo&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mi&gt;d&lt;/mi&gt;&lt;mi&gt;ξ&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;mo&gt;∀&lt;/mo&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;mi&gt;f&lt;/mi&gt;&lt;mo&gt;∈&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;C&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;c&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;msubsup&gt;&lt;mrow&gt;&lt;mi&gt;H&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;/msubsup&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt;&lt;/span&gt;&lt;/span&gt; for the half-space &lt;span&gt;&lt;math&gt;&lt;msubsup&gt;&lt;mrow&gt;&lt;mi&gt;H&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;/msubsup&gt;&lt;mo&gt;:&lt;/mo&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mo&gt;{&lt;/mo&gt;&lt;mi&gt;ξ&lt;/mi&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;z&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mo&gt;…&lt;/mo&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;y&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;y&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mo&gt;…&lt;/mo&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;y&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;mo&gt;∈&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;H&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;:&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;&gt;&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;mo&gt;}&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt; in the Heisenberg group &lt;span&gt;&lt;math&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;H&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/math&gt;&lt;/span&gt; under the conditions &lt;span&gt;&lt;math&gt;&lt;mi&gt;s&lt;/mi&gt;&lt;mi&gt;p&lt;/mi&gt;&lt;mo&gt;&gt;&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/math&gt;&lt;/span&gt; and &lt;span&gt;&lt;math&gt;&lt;mi&gt;α&lt;/mi&gt;&lt;mo&gt;≥&lt;/mo&gt;&lt;mo","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"551 1","pages":"Article 129674"},"PeriodicalIF":1.2,"publicationDate":"2025-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144089765","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Refinements of Van Hamme's (E.2) and (F.2) supercongruences and two supercongruences by Swisher Swisher对Van Hamme (E.2)和(F.2)超同余和两个超同余的改进
IF 1.2 3区 数学
Journal of Mathematical Analysis and Applications Pub Date : 2025-05-13 DOI: 10.1016/j.jmaa.2025.129673
Victor J.W. Guo , Chen Wang
{"title":"Refinements of Van Hamme's (E.2) and (F.2) supercongruences and two supercongruences by Swisher","authors":"Victor J.W. Guo ,&nbsp;Chen Wang","doi":"10.1016/j.jmaa.2025.129673","DOIUrl":"10.1016/j.jmaa.2025.129673","url":null,"abstract":"<div><div>In 1997, Van Hamme proposed 13 supercongruences on truncated hypergeometric series. Van Hamme's (B.2) supercongruence was first confirmed by Mortenson and received a WZ proof by Zudilin later. In 2012, using the WZ method again, Sun extended Van Hamme's (B.2) supercongruence to the modulus <span><math><msup><mrow><mi>p</mi></mrow><mrow><mn>4</mn></mrow></msup></math></span> case, where <em>p</em> is an odd prime. In this paper, by using a more general WZ pair, we generalize Hamme's (E.2) and (F.2) supercongruences, as well as two supercongruences by Swisher, to the modulus <span><math><msup><mrow><mi>p</mi></mrow><mrow><mn>4</mn></mrow></msup></math></span> case. Our generalizations of these supercongruences are related to Euler polynomials. We also put forward a relevant conjecture on a <em>q</em>-supercongruence for further study.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"551 1","pages":"Article 129673"},"PeriodicalIF":1.2,"publicationDate":"2025-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144089764","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hausdorff operators on weighted Bergman and Hardy spaces 加权Bergman和Hardy空间上的Hausdorff算子
IF 1.2 3区 数学
Journal of Mathematical Analysis and Applications Pub Date : 2025-05-09 DOI: 10.1016/j.jmaa.2025.129661
Ha Duy Hung , Luong Dang Ky
{"title":"Hausdorff operators on weighted Bergman and Hardy spaces","authors":"Ha Duy Hung ,&nbsp;Luong Dang Ky","doi":"10.1016/j.jmaa.2025.129661","DOIUrl":"10.1016/j.jmaa.2025.129661","url":null,"abstract":"<div><div>Let <span><math><mn>1</mn><mo>≤</mo><mi>p</mi><mo>&lt;</mo><mo>∞</mo></math></span>, <span><math><mi>α</mi><mo>&gt;</mo><mo>−</mo><mn>1</mn></math></span>, and let <em>φ</em> be a measurable function on <span><math><mo>(</mo><mn>0</mn><mo>,</mo><mo>∞</mo><mo>)</mo></math></span>. The main purpose of this paper is to study the Hausdorff operator<span><span><span><math><msub><mrow><mi>H</mi></mrow><mrow><mi>φ</mi></mrow></msub><mi>f</mi><mo>(</mo><mi>z</mi><mo>)</mo><mo>=</mo><munderover><mo>∫</mo><mrow><mn>0</mn></mrow><mrow><mo>∞</mo></mrow></munderover><mi>f</mi><mrow><mo>(</mo><mfrac><mrow><mi>z</mi></mrow><mrow><mi>t</mi></mrow></mfrac><mo>)</mo></mrow><mfrac><mrow><mi>φ</mi><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mrow><mi>t</mi></mrow></mfrac><mi>d</mi><mi>t</mi><mo>,</mo><mspace></mspace><mi>z</mi><mo>∈</mo><msup><mrow><mi>C</mi></mrow><mrow><mo>+</mo></mrow></msup><mo>,</mo></math></span></span></span> on the weighted Bergman space <span><math><msubsup><mrow><mi>A</mi></mrow><mrow><mi>α</mi></mrow><mrow><mi>p</mi></mrow></msubsup><mo>(</mo><msub><mrow><mi>C</mi></mrow><mrow><mo>+</mo></mrow></msub><mo>)</mo></math></span> and on the power weighted Hardy space <span><math><msubsup><mrow><mi>H</mi></mrow><mrow><mo>|</mo><mo>⋅</mo><msup><mrow><mo>|</mo></mrow><mrow><mi>α</mi></mrow></msup></mrow><mrow><mi>p</mi></mrow></msubsup><mo>(</mo><msub><mrow><mi>C</mi></mrow><mrow><mo>+</mo></mrow></msub><mo>)</mo></math></span> of the upper half-plane. Some applications to the real version of <span><math><msub><mrow><mi>H</mi></mrow><mrow><mi>φ</mi></mrow></msub></math></span> are also given.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"551 1","pages":"Article 129661"},"PeriodicalIF":1.2,"publicationDate":"2025-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144068779","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信