{"title":"Advanced Wigner distribution and ambiguity function in the quadratic-phase Fourier transform domain: Mathematical foundations and practical applications","authors":"Aamir H. Dar, Neeraj Kumar Sharma","doi":"10.1016/j.jmaa.2025.129786","DOIUrl":"10.1016/j.jmaa.2025.129786","url":null,"abstract":"<div><div>In non-stationary signal processing, prior work has incorporated the quadratic-phase Fourier transform (QPFT) into the ambiguity function (AF) and Wigner distribution (WD) to enhance their performance. This paper introduces an advanced Wigner distribution and ambiguity function in the quadratic-phase Fourier transform domain (AWDQ/AAFQ), extending classical WD/AF formulations. Key properties, including the Moyal formula, anti-derivative property, shift, conjugation symmetry, and marginal properties, are established. Furthermore, the proposed distributions demonstrate improved effectiveness in linear frequency-modulated (LFM) signal detection. Simulation results confirm that AWDQ/AAFQ outperforms both traditional WD/AF and existing QPFT-based WD/AF methods in detection accuracy and overall performance.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"552 1","pages":"Article 129786"},"PeriodicalIF":1.2,"publicationDate":"2025-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144298903","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Stability of Riemann solution for the relativistic Euler equations with Chaplygin gas under the perturbation of initial data","authors":"Yu Zhang , Xiaoyue Wei , Yanyan Zhang","doi":"10.1016/j.jmaa.2025.129790","DOIUrl":"10.1016/j.jmaa.2025.129790","url":null,"abstract":"<div><div>The structural stability of the Riemann solution for the relativistic Euler equations (REE) with Chaplygin gas is investigated. First, we perturb the Riemann initial data by introducing three piecewise constant states and rigorously establish the global structures of solutions to the perturbed Riemann problem. Then, by imposing the perturbed parameter <em>ε</em> tends to zero, we show that there is no mass concentration even if the initial perturbed density depends on <em>ε</em>. This result implies that the Riemann solutions for the REE with Chaplygin gas are stable under the local small perturbation of the initial data.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"552 1","pages":"Article 129790"},"PeriodicalIF":1.2,"publicationDate":"2025-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144270235","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Upper metric mean dimension with potential and BS dimension of a factor map","authors":"Zhongxuan Yang, Xiaojun Huang","doi":"10.1016/j.jmaa.2025.129788","DOIUrl":"10.1016/j.jmaa.2025.129788","url":null,"abstract":"<div><div>In this paper, we mainly focus on the upper metric mean dimension with potential and BS dimension of a factor map. We aim to build a link between the localize manifestations of upper metric mean dimension with potential (BS dimension) and the overarching upper metric mean with potential dimension (BS dimension).</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"552 2","pages":"Article 129788"},"PeriodicalIF":1.2,"publicationDate":"2025-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144263691","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"On point-line displacement with elliptic screw motion","authors":"Galip F. Uçak , İsmail Gök","doi":"10.1016/j.jmaa.2025.129787","DOIUrl":"10.1016/j.jmaa.2025.129787","url":null,"abstract":"<div><div>The objective of this paper is to develop the concept of point-line displacement within the framework of elliptic space, denoted as <span><math><msub><mrow><mi>R</mi></mrow><mrow><msub><mrow><mi>a</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>a</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><msub><mrow><mi>a</mi></mrow><mrow><mn>3</mn></mrow></msub></mrow></msub></math></span>. The study begins by summarizing the fundamental principles of elliptic dual quaternions and elliptic screw motion. Next, the notion of point-line displacement is rigorously defined in the context of elliptic inner product spaces, and its algebraic properties are thoroughly analyzed. Finally, the practical relevance of the proposed approach is demonstrated through an illustrative example that establishes the relationship between point-line geometry and the elliptic dual Euler-Rodrigues formula.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"552 2","pages":"Article 129787"},"PeriodicalIF":1.2,"publicationDate":"2025-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144322871","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Metric entropy and the number of periodic orbits for endomorphisms","authors":"Pouya Mehdipour , Maryam Razi , Sanaz Lamei","doi":"10.1016/j.jmaa.2025.129783","DOIUrl":"10.1016/j.jmaa.2025.129783","url":null,"abstract":"<div><div>Using the inverse limit technique, we demonstrate that for an ergodic hyperbolic measure <em>μ</em> preserved by a <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> endomorphism <em>f</em>, the exponential growth rate of the number of periodic measures that approximate <em>μ</em> and that their corresponding Lyapunov exponents approximate the Lyapunov exponents of <em>μ</em>, equals the metric entropy <span><math><msub><mrow><mi>h</mi></mrow><mrow><mi>μ</mi></mrow></msub><mo>(</mo><mi>f</mi><mo>)</mo></math></span>.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"552 2","pages":"Article 129783"},"PeriodicalIF":1.2,"publicationDate":"2025-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144271347","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Duanmei Zhou , Jie Liao , Yudan Gan , Huilin Xu , Rong Zhang
{"title":"All solutions of the Yang-Baxter-like matrix equation AXA = XAX with A satisfying A4 = A","authors":"Duanmei Zhou , Jie Liao , Yudan Gan , Huilin Xu , Rong Zhang","doi":"10.1016/j.jmaa.2025.129785","DOIUrl":"10.1016/j.jmaa.2025.129785","url":null,"abstract":"<div><div>In this paper, we construct some explicit solutions to the Yang-Baxter-like matrix equation <span><math><mi>A</mi><mi>X</mi><mi>A</mi><mo>=</mo><mi>X</mi><mi>A</mi><mi>X</mi></math></span> for matrices <em>A</em> satisfying <span><math><msup><mrow><mi>A</mi></mrow><mrow><mn>4</mn></mrow></msup><mo>=</mo><mi>A</mi></math></span>, thereby extending previous results in this field. By analyzing the minimal polynomial of <em>A</em>, we classify the problem into 11 distinct cases. Our approach leverages the Jordan decomposition of <em>A</em> to simplify the original equation, reducing it to a system of matrix equations involving block-diagonal matrices with smaller blocks. We then systematically solve these reduced equations to obtain the general solution. Finally, we present three numerical examples to demonstrate the applicability and effectiveness of our theoretical results.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"552 2","pages":"Article 129785"},"PeriodicalIF":1.2,"publicationDate":"2025-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144308116","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Roper-Suffridge type extension operators for univalent mappings revisited","authors":"Hidetaka Hamada , Gabriela Kohr , Mirela Kohr","doi":"10.1016/j.jmaa.2025.129763","DOIUrl":"10.1016/j.jmaa.2025.129763","url":null,"abstract":"<div><div>Let <em>f</em> be a normalized univalent function on the unit disc <em>U</em>, and let <span><math><mi>α</mi><mo>,</mo><mi>β</mi><mo>∈</mo><mi>R</mi></math></span>. We consider a family of operators <span><math><msub><mrow><mi>Ψ</mi></mrow><mrow><mi>α</mi><mo>,</mo><mi>β</mi></mrow></msub></math></span> that extend <em>f</em> to biholomorphic mappings defined on the unit ball <em>B</em> of a complex Hilbert space <span><math><mi>H</mi></math></span> into <span><math><mi>H</mi></math></span>, and they are given by <span><math><msub><mrow><mi>Ψ</mi></mrow><mrow><mi>α</mi><mo>,</mo><mi>β</mi></mrow></msub><mo>(</mo><mi>f</mi><mo>)</mo><mo>(</mo><mi>z</mi><mo>)</mo><mo>=</mo><mrow><mo>(</mo><mi>f</mi><mo>(</mo><msub><mrow><mi>z</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>)</mo><mo>,</mo><mi>w</mi><msup><mrow><mo>(</mo><mfrac><mrow><mi>f</mi><mo>(</mo><msub><mrow><mi>z</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>)</mo></mrow><mrow><msub><mrow><mi>z</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow></mfrac><mo>)</mo></mrow><mrow><mi>α</mi></mrow></msup><msup><mrow><mo>(</mo><msup><mrow><mi>f</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>(</mo><msub><mrow><mi>z</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>)</mo><mo>)</mo></mrow><mrow><mi>β</mi></mrow></msup><mo>)</mo></mrow></math></span>, where, for a fixed unit vector <span><math><msub><mrow><mi>e</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>∈</mo><mi>H</mi></math></span>, we use the notation <span><math><mi>z</mi><mo>=</mo><mo>(</mo><msub><mrow><mi>z</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mi>w</mi><mo>)</mo></math></span> if <span><math><mi>z</mi><mo>=</mo><msub><mrow><mi>z</mi></mrow><mrow><mn>1</mn></mrow></msub><msub><mrow><mi>e</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>+</mo><mi>w</mi></math></span> and <em>w</em> is orthogonal to <span><math><msub><mrow><mi>e</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span>. In the case <span><math><mi>α</mi><mo>=</mo><mn>0</mn></math></span> and <span><math><mi>β</mi><mo>=</mo><mn>1</mn><mo>/</mo><mn>2</mn></math></span> we obtain the Roper-Suffridge extension operator. Until now, it is only known that for the pairs <span><math><mo>(</mo><mi>α</mi><mo>,</mo><mi>β</mi><mo>)</mo><mo>∈</mo><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> such that <span><math><mn>0</mn><mo>≤</mo><mi>α</mi><mo>≤</mo><mn>1</mn></math></span>, <span><math><mn>0</mn><mo>≤</mo><mi>β</mi><mo>≤</mo><mn>1</mn><mo>/</mo><mn>2</mn></math></span> and <span><math><mi>α</mi><mo>+</mo><mi>β</mi><mo>≤</mo><mn>1</mn></math></span>, <span><math><msub><mrow><mi>Ψ</mi></mrow><mrow><mi>α</mi><mo>,</mo><mi>β</mi></mrow></msub><mo>(</mo><mi>f</mi><mo>)</mo></math></span> can be embedded as the initial element of a normal Loewner chain on <em>B</em> for any normalized univalent function <em>f</em> on <em>U</em>. In this paper, we describe a closed domain <em>D</em> in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup></math></","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"552 1","pages":"Article 129763"},"PeriodicalIF":1.2,"publicationDate":"2025-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144243617","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Polynomial convexity of the closure of bounded pseudoconvex domains and its applications in dense holomorphic curves","authors":"Sanjoy Chatterjee , Sushil Gorai","doi":"10.1016/j.jmaa.2025.129752","DOIUrl":"10.1016/j.jmaa.2025.129752","url":null,"abstract":"<div><div>In this paper, we prove that the closure of a <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>-smooth bounded strongly pseudoconvex domain is polynomially convex if it is invariant under positive time flows of a holomorphic vector field that has a globally attracting fixed point inside the domain. We also provide a sufficient condition for a bounded pseudoconvex domain so that its closure is polynomially convex. We show that if a class of bounded pseudoconvex domain Ω in <span><math><msup><mrow><mi>C</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> which are invariant under the positive time flow of certain complete holomorphic vector fields, then given any connected complex manifold <em>Y</em>, there exists a holomorphic map from the unit disc to the space of all holomorphic maps from Ω to <em>Y</em> whose image is dense in <span><math><mi>O</mi><mo>(</mo><mi>Ω</mi><mo>,</mo><mi>Y</mi><mo>)</mo></math></span>. This also yields us the existence of a <span><math><mi>O</mi><mo>(</mo><mi>Ω</mi><mo>,</mo><mi>Y</mi><mo>)</mo></math></span>-universal map for any generalized translation on Ω, which implies the hypercyclicity of certain composition operators on <span><math><mi>O</mi><mo>(</mo><mi>Ω</mi><mo>,</mo><mi>Y</mi><mo>)</mo></math></span>.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"552 1","pages":"Article 129752"},"PeriodicalIF":1.2,"publicationDate":"2025-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144298902","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Effective behavior of a time-oscillating parabolic system with non-local and equi-valued interface conditions","authors":"M. Amar , D. Andreucci , C. Timofte","doi":"10.1016/j.jmaa.2025.129753","DOIUrl":"10.1016/j.jmaa.2025.129753","url":null,"abstract":"<div><div>In this paper, we study the homogenization of a heat diffusion problem in a two-phase composite material with imperfect contact conditions on the interface separating its constituents. More precisely, we consider an equi-valued interface condition and a non-local condition, which involves a time-oscillating amplitude factor. We perform a homogenization process, leading to three different macroscopic models, depending on the value of a scaling parameter appearing in the amplitude factor.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"552 2","pages":"Article 129753"},"PeriodicalIF":1.2,"publicationDate":"2025-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144263690","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Global existence and optimal time decay for the Timoshenko system in the homogeneous critical Besov space","authors":"Lianchao Gu","doi":"10.1016/j.jmaa.2025.129749","DOIUrl":"10.1016/j.jmaa.2025.129749","url":null,"abstract":"<div><div>We construct the global existence solutions to the classical Timoshenko system in the homogeneous spatially critical Besov space <span><math><msubsup><mrow><mover><mrow><mi>B</mi></mrow><mrow><mo>˙</mo></mrow></mover></mrow><mrow><mn>2</mn><mo>,</mo><mn>1</mn></mrow><mrow><mn>1</mn><mo>/</mo><mn>2</mn></mrow></msubsup><mo>∩</mo><msubsup><mrow><mover><mrow><mi>B</mi></mrow><mrow><mo>˙</mo></mrow></mover></mrow><mrow><mn>2</mn><mo>,</mo><mn>1</mn></mrow><mrow><mn>3</mn><mo>/</mo><mn>2</mn></mrow></msubsup></math></span>. In comparison with the works in <span><span>[16]</span></span>, we use hybrid Besov spaces with different regularity exponents in low and high frequency. Moreover, under the additional condition that the low-frequency part of the initial perturbation is bounded in <span><math><msubsup><mrow><mover><mrow><mi>B</mi></mrow><mrow><mo>˙</mo></mrow></mover></mrow><mrow><mn>2</mn><mo>,</mo><mo>∞</mo></mrow><mrow><mo>−</mo><msub><mrow><mi>σ</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow></msubsup></math></span> with <span><math><msub><mrow><mi>σ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>∈</mo><mo>(</mo><mo>−</mo><mn>1</mn><mo>/</mo><mn>2</mn><mo>,</mo><mn>1</mn><mo>/</mo><mn>2</mn><mo>]</mo></math></span>, we derive optimal time-decay estimates for the global solution using time-weighted Lyapunov energy methods. This approach not only allows us to obtain the optimal time-decay rates but also to remove the smallness condition on the low frequencies of the initial data, providing new insights into the long-time behavior of solutions to the Timoshenko equation.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"552 2","pages":"Article 129749"},"PeriodicalIF":1.2,"publicationDate":"2025-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144263689","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}