Journal of Mathematical Analysis and Applications最新文献

筛选
英文 中文
Chaos for endomorphisms of completely metrizable groups and linear operators on Fréchet spaces 弗雷谢特空间上完全元胞群和线性算子的内定态混沌
IF 1.2 3区 数学
Journal of Mathematical Analysis and Applications Pub Date : 2024-11-05 DOI: 10.1016/j.jmaa.2024.129033
Zhen Jiang, Jian Li
{"title":"Chaos for endomorphisms of completely metrizable groups and linear operators on Fréchet spaces","authors":"Zhen Jiang,&nbsp;Jian Li","doi":"10.1016/j.jmaa.2024.129033","DOIUrl":"10.1016/j.jmaa.2024.129033","url":null,"abstract":"<div><div>Using some techniques from topological dynamics, we give a uniform treatment of Li-Yorke chaos, mean Li-Yorke chaos and distributional chaos for continuous endomorphisms of completely metrizable groups, and characterize three kinds of chaos (resp. extreme chaos) in terms of the existence of the so-called semi-irregular points (resp. irregular points). We exhibit some examples of inner automorphisms of Polish groups to illustrate the results. We also apply our results to the chaos theory of continuous linear operators on Fréchet spaces, which improves some results in the literature.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"543 2","pages":"Article 129033"},"PeriodicalIF":1.2,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142656122","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Quantitative uniqueness of solutions to a class of Schrödinger equations with inverse square potentials 具有反平方势的一类薛定谔方程解的定量唯一性
IF 1.2 3区 数学
Journal of Mathematical Analysis and Applications Pub Date : 2024-11-05 DOI: 10.1016/j.jmaa.2024.129032
Xiujin Chen , Hairong Liu
{"title":"Quantitative uniqueness of solutions to a class of Schrödinger equations with inverse square potentials","authors":"Xiujin Chen ,&nbsp;Hairong Liu","doi":"10.1016/j.jmaa.2024.129032","DOIUrl":"10.1016/j.jmaa.2024.129032","url":null,"abstract":"<div><div>This paper is devoted to proving the quantitative unique continuation property for solutions to a class of Schrödinger equations with inverse square potentials. The argument is to introduce a frequency function and show an almost monotonicity formula and three-ball inequalities by combining the Hardy's inequality.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"543 2","pages":"Article 129032"},"PeriodicalIF":1.2,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142656180","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A two-lane bidirectional nonlocal traffic model 双线双向非本地交通模型
IF 1.2 3区 数学
Journal of Mathematical Analysis and Applications Pub Date : 2024-11-05 DOI: 10.1016/j.jmaa.2024.129027
Harold Deivi Contreras , Paola Goatin , Luis-Miguel Villada
{"title":"A two-lane bidirectional nonlocal traffic model","authors":"Harold Deivi Contreras ,&nbsp;Paola Goatin ,&nbsp;Luis-Miguel Villada","doi":"10.1016/j.jmaa.2024.129027","DOIUrl":"10.1016/j.jmaa.2024.129027","url":null,"abstract":"<div><div>We propose and study a nonlocal system of balance laws, which models the traffic dynamics on a two-lane and two-way road where drivers have a preferred lane (the lane on their right) and the other one is used only for overtaking. In this model, the convective part is intended to describe the intralane dynamics of vehicles: the flux function includes local and nonlocal terms, namely, the velocity function in each lane depends locally on the density of the class of vehicles traveling on their preferred lane and in a nonlocal form on the density of the class of vehicles overtaking in the opposite direction. The source terms are intended to describe the coupling between the two lanes: the overtaking and return criteria depend on weighted means of the downstream traffic density of the class of vehicles traveling in their preferred lane and of the class of vehicles traveling in the opposite direction on the same lane. We construct approximate solutions using a finite volume scheme and we prove existence of weak solutions by means of compactness estimates. We also show some numerical simulations to describe the behavior of the numerical solutions in different situations and to illustrate some features of model.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"543 2","pages":"Article 129027"},"PeriodicalIF":1.2,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142656126","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Lump and interaction solutions to a (3+1)-dimensional BKP-Boussinesq-like equation (3+1)-dimensional BKP-Boussinesq-like equation 的块解和交互解
IF 1.2 3区 数学
Journal of Mathematical Analysis and Applications Pub Date : 2024-11-05 DOI: 10.1016/j.jmaa.2024.129030
Xiyan Yang, Liangping Tang, Xinyi Gu, Wenxia Chen, Lixin Tian
{"title":"Lump and interaction solutions to a (3+1)-dimensional BKP-Boussinesq-like equation","authors":"Xiyan Yang,&nbsp;Liangping Tang,&nbsp;Xinyi Gu,&nbsp;Wenxia Chen,&nbsp;Lixin Tian","doi":"10.1016/j.jmaa.2024.129030","DOIUrl":"10.1016/j.jmaa.2024.129030","url":null,"abstract":"<div><div>This paper analyzes the (3+1)-dimensional BKP-Boussinesq-like equation, which is widely used to describe and understand nonlinear wave phenomena. We extend Hirota's bilinear method and obtain the generalized bilinear operator. When the prime number <span><math><mi>p</mi><mo>=</mo><mn>3</mn></math></span>, the generalized bilinear form of BKP-Boussinesq-like equation is constructed. Based on its bilinear expression, we explore the lump and lump-soliton solutions to the equation, and analyze the dynamic characteristics and properties of soliton solutions with plots.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"543 2","pages":"Article 129030"},"PeriodicalIF":1.2,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142587093","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Closed-form formulas of two Gauss hypergeometric functions of specific parameters 特定参数的两个高斯超几何函数的闭式公式
IF 1.2 3区 数学
Journal of Mathematical Analysis and Applications Pub Date : 2024-11-05 DOI: 10.1016/j.jmaa.2024.129024
Gradimir V. Milovanović , Feng Qi
{"title":"Closed-form formulas of two Gauss hypergeometric functions of specific parameters","authors":"Gradimir V. Milovanović ,&nbsp;Feng Qi","doi":"10.1016/j.jmaa.2024.129024","DOIUrl":"10.1016/j.jmaa.2024.129024","url":null,"abstract":"<div><div>Using the Faà di Bruno formula, along with three identities of the partial Bell polynomials, and leveraging two differentiation formulas for the Gauss hypergeometric functions, the authors present several closed-form formulas for the Gauss hypergeometric functions<span><span><span><math><mmultiscripts><mrow><mi>F</mi></mrow><mrow><mn>1</mn></mrow><none></none><mprescripts></mprescripts><mrow><mn>2</mn></mrow><none></none></mmultiscripts><mo>(</mo><mi>n</mi><mo>+</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>,</mo><mi>n</mi><mo>+</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>;</mo><mi>n</mi><mo>+</mo><mfrac><mrow><mn>3</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>;</mo><mo>−</mo><msup><mrow><mi>z</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo><mspace></mspace><mtext>and</mtext><mspace></mspace><mmultiscripts><mrow><mi>F</mi></mrow><mrow><mn>1</mn></mrow><none></none><mprescripts></mprescripts><mrow><mn>2</mn></mrow><none></none></mmultiscripts><mo>(</mo><mn>1</mn><mo>,</mo><mi>n</mi><mo>+</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>;</mo><mi>n</mi><mo>+</mo><mfrac><mrow><mn>3</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>;</mo><msup><mrow><mi>z</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></math></span></span></span> for <span><math><mi>n</mi><mo>∈</mo><mo>{</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>,</mo><mo>…</mo><mo>}</mo></math></span> and <span><math><mo>|</mo><mi>z</mi><mo>|</mo><mo>&lt;</mo><mn>1</mn></math></span>. These formulas are analyzed in light of three Gauss relations for contiguous functions, with the aid of a relation between the Gauss hypergeometric functions and the Lerch transcendent. Additionally, the authors determine the location and distribution of the zeros of two polynomials involved in these representations, which contain generalized binomial coefficients. By comparing these formulas, they also derive several combinatorial identities.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"543 2","pages":"Article 129024"},"PeriodicalIF":1.2,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142656178","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Liouville-type theorem for higher order Hardy-Hénon type systems on the sphere 球面上高阶哈迪-赫农类型系统的刘维尔型定理
IF 1.2 3区 数学
Journal of Mathematical Analysis and Applications Pub Date : 2024-11-05 DOI: 10.1016/j.jmaa.2024.129029
Rong Zhang , Vishvesh Kumar , Michael Ruzhansky
{"title":"Liouville-type theorem for higher order Hardy-Hénon type systems on the sphere","authors":"Rong Zhang ,&nbsp;Vishvesh Kumar ,&nbsp;Michael Ruzhansky","doi":"10.1016/j.jmaa.2024.129029","DOIUrl":"10.1016/j.jmaa.2024.129029","url":null,"abstract":"<div><div>In this paper, we study Liouville type theorems for the positive solutions to the following higher order Hardy-Hénon type system involving the conformal GJMS operator on the sphere <span><math><msup><mrow><mi>S</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span>. In order to study this we first employ the Mobius transform to transform the above Hardy-Hénon type system on the sphere <span><math><msup><mrow><mi>S</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> into a higher order elliptic system on <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span>. Then, we show that every positive solution of the higher order elliptic system on <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> is a solution to the associated integral system on <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> by using polyharmonic average and iteration arguments. We use the method of moving planes in integral form to prove that there are no positive solutions for the integral system on <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span>. Finally, together with the symmetry of the sphere <span><math><msup><mrow><mi>S</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span>, we obtain the Liouville type theorem of the higher order Hardy-Hénon type system involving the GJMS operator on the sphere. The results of this paper are also new even for the Lane-Emden system on the sphere.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"543 2","pages":"Article 129029"},"PeriodicalIF":1.2,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142656179","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bergman spaces for the bicomplex Vekua equation with bounded coefficients 具有有界系数的二重维库阿方程的伯格曼空间
IF 1.2 3区 数学
Journal of Mathematical Analysis and Applications Pub Date : 2024-11-04 DOI: 10.1016/j.jmaa.2024.129025
Víctor A. Vicente-Benítez
{"title":"Bergman spaces for the bicomplex Vekua equation with bounded coefficients","authors":"Víctor A. Vicente-Benítez","doi":"10.1016/j.jmaa.2024.129025","DOIUrl":"10.1016/j.jmaa.2024.129025","url":null,"abstract":"<div><div>We develop the theory for the Bergman spaces of generalized <span><math><msub><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span>-solutions of the bicomplex-Vekua equation <span><math><mover><mrow><mo>∂</mo></mrow><mo>‾</mo></mover><mi>W</mi><mo>=</mo><mi>a</mi><mi>W</mi><mo>+</mo><mi>b</mi><mover><mrow><mi>W</mi></mrow><mo>‾</mo></mover></math></span> on bounded domains, where the coefficients <em>a</em> and <em>b</em> are bounded bicomplex-valued functions. We study the completeness of the Bergman space, the regularity of the solutions, and the boundedness of the evaluation functional. For the case <span><math><mi>p</mi><mo>=</mo><mn>2</mn></math></span>, the existence of a reproducing kernel is established, along with a representation of the orthogonal projection onto the Bergman space in terms of the obtained reproducing kernel, and an explicit expression for the orthogonal complement. Additionally, we analyze the main Vekua equation (<span><math><mi>a</mi><mo>=</mo><mn>0</mn></math></span>, <span><math><mi>b</mi><mo>=</mo><mfrac><mrow><mover><mrow><mo>∂</mo></mrow><mo>‾</mo></mover><mi>f</mi></mrow><mrow><mi>f</mi></mrow></mfrac></math></span> with <em>f</em> being a non-vanishing complex-valued function). Results concerning its relationship with a pair of conductivity equations, the construction of metaharmonic conjugates, and the Runge property are presented.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"543 2","pages":"Article 129025"},"PeriodicalIF":1.2,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142656118","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Riemann-Liouville fractional integral in Bochner-Lebesgue spaces III Bochner-Lebesgue 空间中的黎曼-刘维尔分数积分 III
IF 1.2 3区 数学
Journal of Mathematical Analysis and Applications Pub Date : 2024-11-04 DOI: 10.1016/j.jmaa.2024.129023
Paulo M. Carvalho-Neto , Renato Fehlberg Júnior
{"title":"The Riemann-Liouville fractional integral in Bochner-Lebesgue spaces III","authors":"Paulo M. Carvalho-Neto ,&nbsp;Renato Fehlberg Júnior","doi":"10.1016/j.jmaa.2024.129023","DOIUrl":"10.1016/j.jmaa.2024.129023","url":null,"abstract":"<div><div>In this manuscript, we examine the continuity properties of the Riemann-Liouville fractional integral for order <span><math><mi>α</mi><mo>=</mo><mn>1</mn><mo>/</mo><mi>p</mi></math></span>, where <span><math><mi>p</mi><mo>&gt;</mo><mn>1</mn></math></span>, mapping from <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup><mo>(</mo><msub><mrow><mi>t</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>,</mo><msub><mrow><mi>t</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>;</mo><mi>X</mi><mo>)</mo></math></span> to the Banach space <span><math><mi>B</mi><mi>M</mi><mi>O</mi><mo>(</mo><msub><mrow><mi>t</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>,</mo><msub><mrow><mi>t</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>;</mo><mi>X</mi><mo>)</mo><mo>∩</mo><msub><mrow><mi>K</mi></mrow><mrow><mo>(</mo><mi>p</mi><mo>−</mo><mn>1</mn><mo>)</mo><mo>/</mo><mi>p</mi></mrow></msub><mo>(</mo><msub><mrow><mi>t</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>,</mo><msub><mrow><mi>t</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>;</mo><mi>X</mi><mo>)</mo></math></span>. This improvement, refines a result by Hardy-Littlewood. To achieve this, we study properties between spaces <span><math><mi>B</mi><mi>M</mi><mi>O</mi><mo>(</mo><msub><mrow><mi>t</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>,</mo><msub><mrow><mi>t</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>;</mo><mi>X</mi><mo>)</mo></math></span> and <span><math><msub><mrow><mi>K</mi></mrow><mrow><mo>(</mo><mi>p</mi><mo>−</mo><mn>1</mn><mo>)</mo><mo>/</mo><mi>p</mi></mrow></msub><mo>(</mo><msub><mrow><mi>t</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>,</mo><msub><mrow><mi>t</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>;</mo><mi>X</mi><mo>)</mo></math></span>. Additionally, we obtained the boundedness of the fractional integral of order <span><math><mi>α</mi><mo>≥</mo><mn>1</mn></math></span> from <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>1</mn></mrow></msup><mo>(</mo><msub><mrow><mi>t</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>,</mo><msub><mrow><mi>t</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>;</mo><mi>X</mi><mo>)</mo></math></span> into the Riemann-Liouville fractional Sobolev space <span><math><msubsup><mrow><mi>W</mi></mrow><mrow><mi>R</mi><mi>L</mi></mrow><mrow><mi>s</mi><mo>,</mo><mi>p</mi></mrow></msubsup><mo>(</mo><msub><mrow><mi>t</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>,</mo><msub><mrow><mi>t</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>;</mo><mi>X</mi><mo>)</mo></math></span>.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"543 2","pages":"Article 129023"},"PeriodicalIF":1.2,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142656121","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Isometries on Tsirelson-type spaces 齐列尔松类型空间上的等距性
IF 1.2 3区 数学
Journal of Mathematical Analysis and Applications Pub Date : 2024-11-04 DOI: 10.1016/j.jmaa.2024.129019
A. Golbaharan , S. Amiri
{"title":"Isometries on Tsirelson-type spaces","authors":"A. Golbaharan ,&nbsp;S. Amiri","doi":"10.1016/j.jmaa.2024.129019","DOIUrl":"10.1016/j.jmaa.2024.129019","url":null,"abstract":"<div><div>We provide a characterization of the surjective linear isometries on certain sequence spaces that follow the Tsirelson norm.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"543 2","pages":"Article 129019"},"PeriodicalIF":1.2,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142593129","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On the numerical radius of weighted shift operators with generalized geometric weights 论具有广义几何权重的加权移位算子的数值半径
IF 1.2 3区 数学
Journal of Mathematical Analysis and Applications Pub Date : 2024-11-04 DOI: 10.1016/j.jmaa.2024.129021
Bikshan Chakraborty, Sarita Ojha
{"title":"On the numerical radius of weighted shift operators with generalized geometric weights","authors":"Bikshan Chakraborty,&nbsp;Sarita Ojha","doi":"10.1016/j.jmaa.2024.129021","DOIUrl":"10.1016/j.jmaa.2024.129021","url":null,"abstract":"<div><div>In this paper, we give bounds on the numerical radius of the weighted shift operator <em>T</em> with generalized geometric weights<span><span><span><math><mrow><mo>(</mo><mn>1</mn><mo>,</mo><mi>s</mi><mi>q</mi><mo>,</mo><msup><mrow><mi>q</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>,</mo><mi>s</mi><msup><mrow><mi>q</mi></mrow><mrow><mn>3</mn></mrow></msup><mo>,</mo><mo>…</mo><mo>,</mo><msup><mrow><mi>q</mi></mrow><mrow><mn>2</mn><mi>n</mi><mo>−</mo><mn>2</mn></mrow></msup><mo>,</mo><mi>s</mi><msup><mrow><mi>q</mi></mrow><mrow><mn>2</mn><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msup><mo>,</mo><mo>…</mo><mo>)</mo></mrow><mo>,</mo></math></span></span></span> where <span><math><mi>s</mi><mo>&gt;</mo><mn>0</mn></math></span> and <span><math><mn>0</mn><mo>&lt;</mo><mi>q</mi><mo>&lt;</mo><mn>1</mn></math></span>. Also, we provide the entire function <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>T</mi></mrow></msub><mo>(</mo><mi>z</mi><mo>)</mo></math></span> whose minimal positive root gives the numerical radius of the weighted shift operator <em>T</em>. The purpose of this paper is to generalize the results of numerical radius for the weighted shift operator with geometric weights given in <span><span>[5]</span></span>.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"543 2","pages":"Article 129021"},"PeriodicalIF":1.2,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142656123","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信