Journal of Mathematical Analysis and Applications最新文献

筛选
英文 中文
Restricted slowly growing digits for infinite iterated function systems
IF 1.2 3区 数学
Journal of Mathematical Analysis and Applications Pub Date : 2025-03-14 DOI: 10.1016/j.jmaa.2025.129478
Gerardo González Robert , Mumtaz Hussain , Nikita Shulga , Hiroki Takahasi
{"title":"Restricted slowly growing digits for infinite iterated function systems","authors":"Gerardo González Robert ,&nbsp;Mumtaz Hussain ,&nbsp;Nikita Shulga ,&nbsp;Hiroki Takahasi","doi":"10.1016/j.jmaa.2025.129478","DOIUrl":"10.1016/j.jmaa.2025.129478","url":null,"abstract":"<div><div>For an infinite iterated function system <strong>f</strong> on <span><math><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo></math></span> with an attractor <span><math><mi>Λ</mi><mo>(</mo><mi>f</mi><mo>)</mo></math></span> and for an infinite subset <span><math><mi>D</mi><mo>⊆</mo><mi>N</mi></math></span>, consider the set<span><span><span><math><mi>E</mi><mo>(</mo><mi>f</mi><mo>,</mo><mi>D</mi><mo>)</mo><mo>=</mo><mo>{</mo><mi>x</mi><mo>∈</mo><mi>Λ</mi><mo>(</mo><mi>f</mi><mo>)</mo><mo>:</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>x</mi><mo>)</mo><mo>∈</mo><mi>D</mi><mspace></mspace><mtext>for all</mtext><mspace></mspace><mi>n</mi><mo>∈</mo><mi>N</mi><mspace></mspace><mtext>and</mtext><mspace></mspace><munder><mi>lim</mi><mrow><mi>n</mi><mo>→</mo><mo>∞</mo></mrow></munder><mo>⁡</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>=</mo><mo>∞</mo><mo>}</mo><mo>.</mo></math></span></span></span> For a function <span><math><mi>φ</mi><mo>:</mo><mi>N</mi><mo>→</mo><mo>[</mo><mi>min</mi><mo>⁡</mo><mi>D</mi><mo>,</mo><mo>∞</mo><mo>)</mo></math></span> such that <span><math><mi>φ</mi><mo>(</mo><mi>n</mi><mo>)</mo><mo>→</mo><mo>∞</mo></math></span> as <span><math><mi>n</mi><mo>→</mo><mo>∞</mo></math></span>, we compute the Hausdorff dimension of the set<span><span><span><math><mi>S</mi><mo>(</mo><mi>f</mi><mo>,</mo><mi>D</mi><mo>,</mo><mi>φ</mi><mo>)</mo><mo>=</mo><mrow><mo>{</mo><mi>x</mi><mo>∈</mo><mi>E</mi><mo>(</mo><mi>f</mi><mo>,</mo><mi>D</mi><mo>)</mo><mo>:</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>x</mi><mo>)</mo><mo>≤</mo><mi>φ</mi><mo>(</mo><mi>n</mi><mo>)</mo><mspace></mspace><mtext>for all</mtext><mspace></mspace><mi>n</mi><mo>∈</mo><mi>N</mi><mo>}</mo></mrow><mo>.</mo></math></span></span></span> We prove that the Hausdorff dimension stays the same no matter how slowly the function <em>φ</em> grows. One of the consequences of our result is the recent work of Takahasi (2023), which only dealt with regular continued fraction expansions. We further extend our result to slowly growing products of (not necessarily consecutive) digits.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"549 1","pages":"Article 129478"},"PeriodicalIF":1.2,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143644705","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
New type solutions for a biharmonic Hénon problem with slightly subcritical Sobolev exponent
IF 1.2 3区 数学
Journal of Mathematical Analysis and Applications Pub Date : 2025-03-14 DOI: 10.1016/j.jmaa.2025.129481
Wenjing Chen, Fang Yu
{"title":"New type solutions for a biharmonic Hénon problem with slightly subcritical Sobolev exponent","authors":"Wenjing Chen,&nbsp;Fang Yu","doi":"10.1016/j.jmaa.2025.129481","DOIUrl":"10.1016/j.jmaa.2025.129481","url":null,"abstract":"<div><div>In this paper, we study the following biharmonic Hénon problem<span><span><span><math><mrow><mrow><mo>{</mo><mtable><mtr><mtd><msup><mrow><mi>Δ</mi></mrow><mrow><mn>2</mn></mrow></msup><mi>u</mi><mo>=</mo><mi>K</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>|</mo><mi>u</mi><msup><mrow><mo>|</mo></mrow><mrow><mi>p</mi><mo>−</mo><mn>1</mn><mo>−</mo><mi>ϵ</mi></mrow></msup><mi>u</mi><mspace></mspace><mspace></mspace></mtd><mtd><mrow><mi>in</mi></mrow><mspace></mspace><mi>Ω</mi><mo>,</mo></mtd></mtr><mtr><mtd><mi>u</mi><mo>=</mo><mi>Δ</mi><mi>u</mi><mo>=</mo><mn>0</mn><mspace></mspace><mspace></mspace></mtd><mtd><mrow><mi>on</mi></mrow><mspace></mspace><mo>∂</mo><mi>Ω</mi><mo>,</mo></mtd></mtr></mtable></mrow></mrow></math></span></span></span> where Ω is a bounded and smooth domain in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> with <span><math><mn>6</mn><mo>≤</mo><mi>n</mi><mo>≤</mo><mn>12</mn></math></span>, <span><math><mi>p</mi><mo>=</mo><mfrac><mrow><mi>n</mi><mo>+</mo><mn>4</mn></mrow><mrow><mi>n</mi><mo>−</mo><mn>4</mn></mrow></mfrac></math></span>, and <span><math><mi>p</mi><mo>+</mo><mn>1</mn><mo>=</mo><mfrac><mrow><mn>2</mn><mi>n</mi></mrow><mrow><mi>n</mi><mo>−</mo><mn>4</mn></mrow></mfrac></math></span> denotes the critical Sobolev exponent for the embedding <span><math><msup><mrow><mi>H</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>(</mo><mi>Ω</mi><mo>)</mo><mo>∩</mo><msubsup><mrow><mi>H</mi></mrow><mrow><mn>0</mn></mrow><mrow><mn>1</mn></mrow></msubsup><mo>(</mo><mi>Ω</mi><mo>)</mo><mo>↪</mo><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi><mo>+</mo><mn>1</mn></mrow></msup><mo>(</mo><mi>Ω</mi><mo>)</mo></math></span>. The parameter <span><math><mi>ϵ</mi><mo>&gt;</mo><mn>0</mn></math></span> is a small, and the function <span><math><mi>K</mi><mo>∈</mo><msup><mrow><mi>C</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>(</mo><mover><mrow><mi>Ω</mi></mrow><mrow><mo>¯</mo></mrow></mover><mo>)</mo></math></span> is positive and satisfies<span><span><span><math><mi>∇</mi><mo>(</mo><mi>K</mi><msup><mrow><mo>(</mo><msub><mrow><mi>ξ</mi></mrow><mrow><mo>⁎</mo></mrow></msub><mo>)</mo></mrow><mrow><mfrac><mrow><mo>−</mo><mn>2</mn></mrow><mrow><mi>p</mi><mo>−</mo><mn>1</mn></mrow></mfrac></mrow></msup><mo>)</mo><mo>⋅</mo><mi>η</mi><mo>(</mo><msub><mrow><mi>ξ</mi></mrow><mrow><mo>⁎</mo></mrow></msub><mo>)</mo><mo>&gt;</mo><mn>0</mn><mo>,</mo></math></span></span></span> where <span><math><msub><mrow><mi>ξ</mi></mrow><mrow><mo>⁎</mo></mrow></msub><mo>∈</mo><mo>∂</mo><mi>Ω</mi></math></span> is a non-degenerate critical point of <em>K</em> which is restricted to the boundary of Ω, and <em>η</em> is the inner normal unit vector on ∂Ω. We establish the existence of a positive solution and a sign-changing solution with two bubbles concentrating at <span><math><msub><mrow><mi>ξ</mi></mrow><mrow><mo>⁎</mo></mrow></msub></math></span> for the above problem.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"549 1","pages":"Article 129481"},"PeriodicalIF":1.2,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143644706","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dirac structure for linear dynamical systems on Sobolev spaces
IF 1.2 3区 数学
Journal of Mathematical Analysis and Applications Pub Date : 2025-03-14 DOI: 10.1016/j.jmaa.2025.129493
N. Kumar , H.J. Zwart , J.J.W. van der Vegt
{"title":"Dirac structure for linear dynamical systems on Sobolev spaces","authors":"N. Kumar ,&nbsp;H.J. Zwart ,&nbsp;J.J.W. van der Vegt","doi":"10.1016/j.jmaa.2025.129493","DOIUrl":"10.1016/j.jmaa.2025.129493","url":null,"abstract":"<div><div>The port-Hamiltonian structure of linear dynamical systems is defined by a Dirac structure. In this paper we prove existence and well-posedness of a Dirac structure for linear dynamical systems on Sobolev spaces of differential forms on a bounded, connected and oriented manifold with Lipschitz continuous boundary. This result extends the proof of a Dirac structure for linear dynamical systems originally defined on smooth differential forms to a much larger class of function spaces, which is of theoretical importance and provides a solid basis for the numerical discretization of many linear port-Hamiltonian dynamical systems.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"549 2","pages":"Article 129493"},"PeriodicalIF":1.2,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143704571","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On the existence of eigenvalues of a one-dimensional Dirac operator
IF 1.2 3区 数学
Journal of Mathematical Analysis and Applications Pub Date : 2025-03-14 DOI: 10.1016/j.jmaa.2025.129485
Daniel Sánchez-Mendoza , Monika Winklmeier
{"title":"On the existence of eigenvalues of a one-dimensional Dirac operator","authors":"Daniel Sánchez-Mendoza ,&nbsp;Monika Winklmeier","doi":"10.1016/j.jmaa.2025.129485","DOIUrl":"10.1016/j.jmaa.2025.129485","url":null,"abstract":"<div><div>The aim of this paper is to study the existence of eigenvalues in the gap of the essential spectrum of the one-dimensional Dirac operator in the presence of a bounded potential. We employ a generalized variational principle to prove existence of such eigenvalues, estimate how many eigenvalues there are, and give upper and lower bounds for them.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"549 2","pages":"Article 129485"},"PeriodicalIF":1.2,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143644157","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Cartesian product of shrinking target sets in dyadic system and triadic system
IF 1.2 3区 数学
Journal of Mathematical Analysis and Applications Pub Date : 2025-03-14 DOI: 10.1016/j.jmaa.2025.129495
Wanjin Cheng
{"title":"The Cartesian product of shrinking target sets in dyadic system and triadic system","authors":"Wanjin Cheng","doi":"10.1016/j.jmaa.2025.129495","DOIUrl":"10.1016/j.jmaa.2025.129495","url":null,"abstract":"&lt;div&gt;&lt;div&gt;In this paper, we consider the Cartesian product of shrinking target sets. Let &lt;em&gt;f&lt;/em&gt; and &lt;em&gt;g&lt;/em&gt; be two positive continuous functions. For any &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;y&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;∈&lt;/mo&gt;&lt;mo&gt;[&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mo&gt;]&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt;, we define the shrinking target sets as follows:&lt;span&gt;&lt;span&gt;&lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;E&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;f&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mo&gt;{&lt;/mo&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;mo&gt;∈&lt;/mo&gt;&lt;mo&gt;[&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mo&gt;]&lt;/mo&gt;&lt;mo&gt;:&lt;/mo&gt;&lt;mo&gt;|&lt;/mo&gt;&lt;msubsup&gt;&lt;mrow&gt;&lt;mi&gt;T&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;/msubsup&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;|&lt;/mo&gt;&lt;mo&gt;&lt;&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;e&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;S&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mi&gt;f&lt;/mi&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mtext&gt; for infinitely many &lt;/mtext&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;∈&lt;/mo&gt;&lt;mi&gt;N&lt;/mi&gt;&lt;mo&gt;}&lt;/mo&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt;&lt;/span&gt;&lt;/span&gt; and&lt;span&gt;&lt;span&gt;&lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;E&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;3&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;g&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mo&gt;{&lt;/mo&gt;&lt;mi&gt;y&lt;/mi&gt;&lt;mo&gt;∈&lt;/mo&gt;&lt;mo&gt;[&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mo&gt;]&lt;/mo&gt;&lt;mo&gt;:&lt;/mo&gt;&lt;mo&gt;|&lt;/mo&gt;&lt;msubsup&gt;&lt;mrow&gt;&lt;mi&gt;T&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;3&lt;/mn&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;m&lt;/mi&gt;&lt;/mrow&gt;&lt;/msubsup&gt;&lt;mi&gt;y&lt;/mi&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;y&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;|&lt;/mo&gt;&lt;mo&gt;&lt;&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;e&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mover&gt;&lt;mrow&gt;&lt;mi&gt;S&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;¯&lt;/mo&gt;&lt;/mrow&gt;&lt;/mover&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;m&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mi&gt;g&lt;/mi&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;y&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mtext&gt; for infinitely many &lt;/mtext&gt;&lt;mi&gt;m&lt;/mi&gt;&lt;mo&gt;∈&lt;/mo&gt;&lt;mi&gt;N&lt;/mi&gt;&lt;mo&gt;}&lt;/mo&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt;&lt;/span&gt;&lt;/span&gt; where &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;S&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mi&gt;f&lt;/mi&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;msubsup&gt;&lt;mrow&gt;&lt;mo&gt;∑&lt;/mo&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;j&lt;/mi&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msubsup&gt;&lt;mi&gt;f&lt;/mi&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;msubsup&gt;&lt;mrow&gt;&lt;mi&gt;T&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;j&lt;/mi&gt;&lt;/mrow&gt;&lt;/msubsup&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt; and &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mover&gt;&lt;mrow&gt;&lt;mi&gt;S&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;¯&lt;/mo&gt;&lt;/mrow&gt;&lt;/mover&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;m&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mi&gt;g&lt;/mi&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;y&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;msubsup&gt;&lt;mrow&gt;&lt;mo&gt;∑&lt;/mo&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;j&lt;/mi&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;m&lt;/mi&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msubsup&gt;&lt;mi&gt;g&lt;/mi&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;msubsup&gt;&lt;mrow&gt;&lt;mi&gt;T&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;3&lt;/mn&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;j&lt;/mi&gt;&lt;/mrow&gt;&lt;/msubsup&gt;&lt;mi&gt;y&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt; denote the Birkhoff ergodic sums, and &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;T&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;b&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mi&gt;b&lt;/mi&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mtext&gt;mod &lt;/mtext&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt;.&lt;/div&gt;&lt;div&gt;The Hausdorff dimension of the Cartesian product set &lt;span&gt;&lt;math","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"549 1","pages":"Article 129495"},"PeriodicalIF":1.2,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143683950","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Polynomial growth and functional calculus in algebras of integrable cross-sections
IF 1.2 3区 数学
Journal of Mathematical Analysis and Applications Pub Date : 2025-03-14 DOI: 10.1016/j.jmaa.2025.129486
Felipe I. Flores
{"title":"Polynomial growth and functional calculus in algebras of integrable cross-sections","authors":"Felipe I. Flores","doi":"10.1016/j.jmaa.2025.129486","DOIUrl":"10.1016/j.jmaa.2025.129486","url":null,"abstract":"<div><div>Let <span><math><mi>G</mi></math></span> be a locally compact group with polynomial growth of order <em>d</em>, a polynomial weight <em>ν</em> on <span><math><mi>G</mi></math></span> and a Fell bundle <span><math><mi>C</mi><mover><mo>→</mo><mi>q</mi></mover><mi>G</mi></math></span>. We study the Banach <sup>⁎</sup>-algebras <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>1</mn></mrow></msup><mo>(</mo><mi>G</mi><mspace></mspace><mo>|</mo><mspace></mspace><mi>C</mi><mo>)</mo></math></span> and <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>1</mn><mo>,</mo><mi>ν</mi></mrow></msup><mo>(</mo><mi>G</mi><mspace></mspace><mo>|</mo><mspace></mspace><mi>C</mi><mo>)</mo></math></span>, consisting of integrable cross-sections with respect to <span><math><mi>d</mi><mi>x</mi></math></span> and <span><math><mi>ν</mi><mo>(</mo><mi>x</mi><mo>)</mo><mi>d</mi><mi>x</mi></math></span>, respectively. By exploring new relations between the <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup></math></span>-norms and the norm of the Hilbert <span><math><msup><mrow><mi>C</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span>-module <span><math><msubsup><mrow><mi>L</mi></mrow><mrow><mi>e</mi></mrow><mrow><mn>2</mn></mrow></msubsup><mo>(</mo><mi>G</mi><mspace></mspace><mo>|</mo><mspace></mspace><mi>C</mi><mo>)</mo></math></span>, we are able to show that the growth of the self-adjoint, compactly supported, continuous cross-sections is polynomial. More precisely, they satisfy<span><span><span><math><mo>‖</mo><msup><mrow><mi>e</mi></mrow><mrow><mi>i</mi><mi>t</mi><mi>Φ</mi></mrow></msup><mo>‖</mo><mo>=</mo><mi>O</mi><mo>(</mo><mo>|</mo><mi>t</mi><msup><mrow><mo>|</mo></mrow><mrow><mi>n</mi></mrow></msup><mo>)</mo><mo>,</mo><mspace></mspace><mspace></mspace><mtext>as</mtext><mspace></mspace><mo>|</mo><mi>t</mi><mo>|</mo><mo>→</mo><mo>∞</mo><mo>,</mo></math></span></span></span> for values of <em>n</em> that only depend on <em>d</em> and the weight <em>ν</em>. We use this fact to develop a smooth functional calculus for such elements. We also give some sufficient conditions for these algebras to be symmetric. As consequences, we show that these algebras are locally regular, <sup>⁎</sup>-regular and have the Wiener property (when symmetric), among other results. Our results are already new for convolution algebras associated with <span><math><msup><mrow><mi>C</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span>-dynamical systems.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"549 2","pages":"Article 129486"},"PeriodicalIF":1.2,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143644543","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Limits of hypercyclic operators on Hilbert spaces
IF 1.2 3区 数学
Journal of Mathematical Analysis and Applications Pub Date : 2025-03-14 DOI: 10.1016/j.jmaa.2025.129484
Pietro Aiena, Fabio Burderi, Salvatore Triolo
{"title":"Limits of hypercyclic operators on Hilbert spaces","authors":"Pietro Aiena,&nbsp;Fabio Burderi,&nbsp;Salvatore Triolo","doi":"10.1016/j.jmaa.2025.129484","DOIUrl":"10.1016/j.jmaa.2025.129484","url":null,"abstract":"<div><div>This article concerns the operators <span><math><mi>T</mi><mo>∈</mo><mi>L</mi><mo>(</mo><mi>H</mi><mo>)</mo></math></span>, defined on a separable Hilbert space <em>H</em>, that belong to the norm closure <span><math><mover><mrow><mi>H</mi><mi>C</mi><mo>(</mo><mi>H</mi><mo>)</mo></mrow><mo>‾</mo></mover></math></span> in <span><math><mi>L</mi><mo>(</mo><mi>H</mi><mo>)</mo></math></span> of the set <span><math><mi>H</mi><mi>C</mi><mo>(</mo><mi>H</mi><mo>)</mo></math></span> of all hypercyclic operators. Starting from a Herrero's characterization of these operators <span><span>[11]</span></span> we deduce some criteria that are very useful in many concrete cases. We also show that if <span><math><mi>T</mi><mo>∈</mo><mi>L</mi><mo>(</mo><mi>H</mi><mo>)</mo></math></span> is invertible then <span><math><mi>T</mi><mo>∈</mo><mover><mrow><mi>H</mi><mi>C</mi><mo>(</mo><mi>H</mi><mo>)</mo></mrow><mo>‾</mo></mover></math></span> if and only if <span><math><msup><mrow><mi>T</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup><mo>∈</mo><mover><mrow><mi>H</mi><mi>C</mi><mo>(</mo><mi>H</mi><mo>)</mo></mrow><mo>‾</mo></mover></math></span>. This result extends to <span><math><mover><mrow><mi>H</mi><mi>C</mi><mo>(</mo><mi>H</mi><mo>)</mo></mrow><mo>‾</mo></mover></math></span> a known result of Kitai and Herrero established for hypercyclic operators, (<span><span>[13]</span></span>).</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"548 2","pages":"Article 129484"},"PeriodicalIF":1.2,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143737921","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An alternate proof for the global mean speed of bistable transition fronts
IF 1.2 3区 数学
Journal of Mathematical Analysis and Applications Pub Date : 2025-03-14 DOI: 10.1016/j.jmaa.2025.129492
Linlin Li , Hong Xu , Zhi-Cheng Wang
{"title":"An alternate proof for the global mean speed of bistable transition fronts","authors":"Linlin Li ,&nbsp;Hong Xu ,&nbsp;Zhi-Cheng Wang","doi":"10.1016/j.jmaa.2025.129492","DOIUrl":"10.1016/j.jmaa.2025.129492","url":null,"abstract":"<div><div>In this paper, we present an alternate proof to show the existence and uniqueness of the global mean speed of bistable transition fronts under a general framework.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"549 2","pages":"Article 129492"},"PeriodicalIF":1.2,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143644593","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
(p,q)-Sobolev inequality and Nash inequality on compact Finsler metric measure manifolds
IF 1.2 3区 数学
Journal of Mathematical Analysis and Applications Pub Date : 2025-03-14 DOI: 10.1016/j.jmaa.2025.129491
Xinyue Cheng, Qihui Ni
{"title":"(p,q)-Sobolev inequality and Nash inequality on compact Finsler metric measure manifolds","authors":"Xinyue Cheng,&nbsp;Qihui Ni","doi":"10.1016/j.jmaa.2025.129491","DOIUrl":"10.1016/j.jmaa.2025.129491","url":null,"abstract":"<div><div>In this paper, we carry out in-depth research centering around the <span><math><mo>(</mo><mi>p</mi><mo>,</mo><mi>q</mi><mo>)</mo></math></span>-Sobolev inequality and Nash inequality on compact Finsler metric measure manifolds under the condition that <span><math><msub><mrow><mi>Ric</mi></mrow><mrow><mo>∞</mo></mrow></msub><mo>≥</mo><mo>−</mo><mi>K</mi></math></span> for some <span><math><mi>K</mi><mo>≥</mo><mn>0</mn></math></span>. We first obtain a global <em>p</em>-Poincaré inequality on complete Finsler manifolds. Based on this, we can derive a <span><math><mo>(</mo><mi>p</mi><mo>,</mo><mi>q</mi><mo>)</mo></math></span>-Sobolev inequality. Furthermore, we establish a global optimal <span><math><mo>(</mo><mi>p</mi><mo>,</mo><mi>q</mi><mo>)</mo></math></span>-Sobolev inequality. Finally, as an application of the <em>p</em>-Poincaré inequality, we prove a Nash inequality.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"549 2","pages":"Article 129491"},"PeriodicalIF":1.2,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143644594","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Upper bounds for the blow-up time of the 2-d parabolic-elliptic Patlak-Keller-Segel model of chemotaxis
IF 1.2 3区 数学
Journal of Mathematical Analysis and Applications Pub Date : 2025-03-14 DOI: 10.1016/j.jmaa.2025.129487
Patrick Maheux
{"title":"Upper bounds for the blow-up time of the 2-d parabolic-elliptic Patlak-Keller-Segel model of chemotaxis","authors":"Patrick Maheux","doi":"10.1016/j.jmaa.2025.129487","DOIUrl":"10.1016/j.jmaa.2025.129487","url":null,"abstract":"<div><div>In this paper, we obtain upper bounds for the critical time <span><math><msup><mrow><mi>T</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span> of the blow-up for the parabolic-elliptic Patlak-Keller-Segel system on the 2D-Euclidean space. No moment condition or/and entropy condition are required on the initial data; only the usual assumptions of non-negativity and finiteness of the total mass is assumed. The result is expressed not only in terms of supercritical mass <span><math><mi>M</mi><mo>&gt;</mo><mn>8</mn><mi>π</mi></math></span>, but also in terms of the <em>shape</em> of the initial data.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"549 2","pages":"Article 129487"},"PeriodicalIF":1.2,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143644463","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信