Dimitri Bytchenkoff , Michael Speckbacher , Peter Balazs
{"title":"Kernel theorems for operators on co-orbit spaces associated with localised frames","authors":"Dimitri Bytchenkoff , Michael Speckbacher , Peter Balazs","doi":"10.1016/j.jmaa.2025.129678","DOIUrl":"10.1016/j.jmaa.2025.129678","url":null,"abstract":"<div><div>Kernel theorems provide a convenient representation of bounded linear operators. For the operator acting on a concrete function space, this means that its action on any element of the space can be expressed as a generalised integral operator, in a way reminiscent of the matrix representation of linear operators acting on finite dimensional vector spaces. We prove kernel theorems for bounded linear operators acting on co-orbit spaces associated with localised frames. Our two main results characterise the spaces of operators whose generalised integral kernels belong to the co-orbit spaces of test functions and distributions associated with the tensor product of the localised frames respectively. Moreover, using a version of Schur's test, we establish a characterisation of the bounded linear operators between some specific co-orbit spaces and kernels in mixed-norm co-orbit spaces.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"551 1","pages":"Article 129678"},"PeriodicalIF":1.2,"publicationDate":"2025-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144068780","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Sobolev and Hölder estimates for the ∂‾ equation on pseudoconvex domains of finite type in C2","authors":"Ziming Shi","doi":"10.1016/j.jmaa.2025.129638","DOIUrl":"10.1016/j.jmaa.2025.129638","url":null,"abstract":"<div><div>We prove a homotopy formula which yields almost sharp estimates in all (positive-indexed) Sobolev and Hölder-Zygmund spaces for the <span><math><mover><mrow><mo>∂</mo></mrow><mo>‾</mo></mover></math></span> equation on pseudoconvex domains of finite type in <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>, extending the earlier results of Fefferman-Kohn (1988), Range (1990), and Chang-Nagel-Stein (1992). The main novelty of our proof is the construction of holomorphic support functions that admit precise estimates when the parameter variable lies in a thin shell outside the domain.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"551 1","pages":"Article 129638"},"PeriodicalIF":1.2,"publicationDate":"2025-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144147965","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"On a product of three theta functions and the number of representations of integers as mixed ternary sums involving squares, triangular, pentagonal and octagonal numbers","authors":"Nasser Abdo Saeed Bulkhali , Gedela Kavya Keerthana , Ranganatha Dasappa","doi":"10.1016/j.jmaa.2025.129676","DOIUrl":"10.1016/j.jmaa.2025.129676","url":null,"abstract":"<div><div>In this paper, we derive a general formula to express the product of three theta functions as a linear combination of other products of three theta functions. Moreover, we use the main formula to deduce a general formula for the product of two theta functions. Furthermore, as applications, we extract several theorems in the theory of representation of integers as mixed ternary sums involving squares, triangular numbers, generalized pentagonal numbers and generalized octagonal numbers.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"551 2","pages":"Article 129676"},"PeriodicalIF":1.2,"publicationDate":"2025-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144090558","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Fractional Hardy's inequality for half-spaces in the Heisenberg group","authors":"Rama Rawat, Haripada Roy","doi":"10.1016/j.jmaa.2025.129674","DOIUrl":"10.1016/j.jmaa.2025.129674","url":null,"abstract":"<div><div>We establish the following fractional Hardy's inequality<span><span><span><math><munder><mo>∫</mo><mrow><msubsup><mrow><mi>H</mi></mrow><mrow><mo>+</mo></mrow><mrow><mi>n</mi></mrow></msubsup></mrow></munder><mfrac><mrow><mo>|</mo><mi>f</mi><mo>(</mo><mi>ξ</mi><mo>)</mo><msup><mrow><mo>|</mo></mrow><mrow><mi>p</mi></mrow></msup></mrow><mrow><msubsup><mrow><mi>x</mi></mrow><mrow><mn>1</mn></mrow><mrow><mi>s</mi><mi>p</mi></mrow></msubsup><mo>|</mo><mi>z</mi><msup><mrow><mo>|</mo></mrow><mrow><mi>α</mi></mrow></msup></mrow></mfrac><mi>d</mi><mi>ξ</mi><mo>≤</mo><mi>C</mi><munder><mo>∫</mo><mrow><msubsup><mrow><mi>H</mi></mrow><mrow><mo>+</mo></mrow><mrow><mi>n</mi></mrow></msubsup></mrow></munder><munder><mo>∫</mo><mrow><msubsup><mrow><mi>H</mi></mrow><mrow><mo>+</mo></mrow><mrow><mi>n</mi></mrow></msubsup></mrow></munder><mfrac><mrow><mo>|</mo><mi>f</mi><mo>(</mo><mi>ξ</mi><mo>)</mo><mo>−</mo><mi>f</mi><mo>(</mo><msup><mrow><mi>ξ</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>)</mo><msup><mrow><mo>|</mo></mrow><mrow><mi>p</mi></mrow></msup></mrow><mrow><mi>d</mi><msup><mrow><mo>(</mo><msup><mrow><mi>ξ</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup><mo>∘</mo><msup><mrow><mi>ξ</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>)</mo></mrow><mrow><mi>Q</mi><mo>+</mo><mi>s</mi><mi>p</mi></mrow></msup><mo>|</mo><msup><mrow><mi>z</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>−</mo><mi>z</mi><msup><mrow><mo>|</mo></mrow><mrow><mi>α</mi></mrow></msup></mrow></mfrac><mi>d</mi><msup><mrow><mi>ξ</mi></mrow><mrow><mo>′</mo></mrow></msup><mi>d</mi><mi>ξ</mi><mo>,</mo><mspace></mspace><mspace></mspace><mo>∀</mo><mspace></mspace><mi>f</mi><mo>∈</mo><msub><mrow><mi>C</mi></mrow><mrow><mi>c</mi></mrow></msub><mo>(</mo><msubsup><mrow><mi>H</mi></mrow><mrow><mo>+</mo></mrow><mrow><mi>n</mi></mrow></msubsup><mo>)</mo></math></span></span></span> for the half-space <span><math><msubsup><mrow><mi>H</mi></mrow><mrow><mo>+</mo></mrow><mrow><mi>n</mi></mrow></msubsup><mo>:</mo><mo>=</mo><mo>{</mo><mi>ξ</mi><mo>=</mo><mo>(</mo><mi>z</mi><mo>,</mo><mi>t</mi><mo>)</mo><mo>=</mo><mo>(</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>x</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>,</mo><msub><mrow><mi>y</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>y</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>y</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>,</mo><mi>t</mi><mo>)</mo><mo>∈</mo><msup><mrow><mi>H</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>:</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>></mo><mn>0</mn><mo>}</mo></math></span> in the Heisenberg group <span><math><msup><mrow><mi>H</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> under the conditions <span><math><mi>s</mi><mi>p</mi><mo>></mo><mn>1</mn></math></span> and <span><math><mi>α</mi><mo>≥</mo><mo","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"551 1","pages":"Article 129674"},"PeriodicalIF":1.2,"publicationDate":"2025-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144089765","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Refinements of Van Hamme's (E.2) and (F.2) supercongruences and two supercongruences by Swisher","authors":"Victor J.W. Guo , Chen Wang","doi":"10.1016/j.jmaa.2025.129673","DOIUrl":"10.1016/j.jmaa.2025.129673","url":null,"abstract":"<div><div>In 1997, Van Hamme proposed 13 supercongruences on truncated hypergeometric series. Van Hamme's (B.2) supercongruence was first confirmed by Mortenson and received a WZ proof by Zudilin later. In 2012, using the WZ method again, Sun extended Van Hamme's (B.2) supercongruence to the modulus <span><math><msup><mrow><mi>p</mi></mrow><mrow><mn>4</mn></mrow></msup></math></span> case, where <em>p</em> is an odd prime. In this paper, by using a more general WZ pair, we generalize Hamme's (E.2) and (F.2) supercongruences, as well as two supercongruences by Swisher, to the modulus <span><math><msup><mrow><mi>p</mi></mrow><mrow><mn>4</mn></mrow></msup></math></span> case. Our generalizations of these supercongruences are related to Euler polynomials. We also put forward a relevant conjecture on a <em>q</em>-supercongruence for further study.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"551 1","pages":"Article 129673"},"PeriodicalIF":1.2,"publicationDate":"2025-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144089764","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Hausdorff operators on weighted Bergman and Hardy spaces","authors":"Ha Duy Hung , Luong Dang Ky","doi":"10.1016/j.jmaa.2025.129661","DOIUrl":"10.1016/j.jmaa.2025.129661","url":null,"abstract":"<div><div>Let <span><math><mn>1</mn><mo>≤</mo><mi>p</mi><mo><</mo><mo>∞</mo></math></span>, <span><math><mi>α</mi><mo>></mo><mo>−</mo><mn>1</mn></math></span>, and let <em>φ</em> be a measurable function on <span><math><mo>(</mo><mn>0</mn><mo>,</mo><mo>∞</mo><mo>)</mo></math></span>. The main purpose of this paper is to study the Hausdorff operator<span><span><span><math><msub><mrow><mi>H</mi></mrow><mrow><mi>φ</mi></mrow></msub><mi>f</mi><mo>(</mo><mi>z</mi><mo>)</mo><mo>=</mo><munderover><mo>∫</mo><mrow><mn>0</mn></mrow><mrow><mo>∞</mo></mrow></munderover><mi>f</mi><mrow><mo>(</mo><mfrac><mrow><mi>z</mi></mrow><mrow><mi>t</mi></mrow></mfrac><mo>)</mo></mrow><mfrac><mrow><mi>φ</mi><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mrow><mi>t</mi></mrow></mfrac><mi>d</mi><mi>t</mi><mo>,</mo><mspace></mspace><mi>z</mi><mo>∈</mo><msup><mrow><mi>C</mi></mrow><mrow><mo>+</mo></mrow></msup><mo>,</mo></math></span></span></span> on the weighted Bergman space <span><math><msubsup><mrow><mi>A</mi></mrow><mrow><mi>α</mi></mrow><mrow><mi>p</mi></mrow></msubsup><mo>(</mo><msub><mrow><mi>C</mi></mrow><mrow><mo>+</mo></mrow></msub><mo>)</mo></math></span> and on the power weighted Hardy space <span><math><msubsup><mrow><mi>H</mi></mrow><mrow><mo>|</mo><mo>⋅</mo><msup><mrow><mo>|</mo></mrow><mrow><mi>α</mi></mrow></msup></mrow><mrow><mi>p</mi></mrow></msubsup><mo>(</mo><msub><mrow><mi>C</mi></mrow><mrow><mo>+</mo></mrow></msub><mo>)</mo></math></span> of the upper half-plane. Some applications to the real version of <span><math><msub><mrow><mi>H</mi></mrow><mrow><mi>φ</mi></mrow></msub></math></span> are also given.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"551 1","pages":"Article 129661"},"PeriodicalIF":1.2,"publicationDate":"2025-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144068779","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Small amplitude periodic bouncing solutions for impact oscillators with indefinite weight","authors":"Chunlian Liu , Chao Wang , Zhiguo Wang","doi":"10.1016/j.jmaa.2025.129649","DOIUrl":"10.1016/j.jmaa.2025.129649","url":null,"abstract":"<div><div>We investigate periodic bouncing solutions for a class of impact oscillators with an indefinite weight near the origin. To regularize the non-smoothness of the associated Poincaré map, we perform a series of canonical transformations. By applying the Poincaré-Birkhoff theorem, we establish the existence of infinitely many small amplitude subharmonic bouncing solutions for the system.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"551 1","pages":"Article 129649"},"PeriodicalIF":1.2,"publicationDate":"2025-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143934965","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Bounds on the aspect ratio of the momentum support of a 2D collisionless plasma","authors":"Matthew Hernandez , Neel Patel , Elena Salguero","doi":"10.1016/j.jmaa.2025.129647","DOIUrl":"10.1016/j.jmaa.2025.129647","url":null,"abstract":"<div><div>The relativistic Vlasov-Maxwell system is a kinetic model for collisionless plasmas. For the two-dimensional model, global well-posedness of this model is known and was proven by deriving global bounds on the momentum support of the particle density function. In this paper, we prove bounds on the magnitude of the momentum support in one direction depending on the magnitude of the support in the corresponding orthogonal direction.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"551 1","pages":"Article 129647"},"PeriodicalIF":1.2,"publicationDate":"2025-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143942710","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"On the lineability and maximal lineability of the set of non-absolutely summing operators","authors":"Majid Fakhar , Maryam Soleimani-Mourchehkhorti","doi":"10.1016/j.jmaa.2025.129650","DOIUrl":"10.1016/j.jmaa.2025.129650","url":null,"abstract":"<div><div>In this article, we investigate <em>μ</em>-lineability of the set of non-absolutely <em>p</em>-summing operators between certain pairs of Banach spaces. Moreover, we prove that for many known Banach spaces <em>E</em> and <em>F</em>, <span><math><mi>K</mi><mo>(</mo><mi>E</mi><mo>,</mo><mi>F</mi><mo>)</mo><mo>∖</mo><msub><mrow><mo>⋃</mo></mrow><mrow><mn>1</mn><mo>≤</mo><mi>p</mi><mo><</mo><mo>∞</mo></mrow></msub><msub><mrow><mi>Π</mi></mrow><mrow><mi>p</mi></mrow></msub><mo>(</mo><mi>E</mi><mo>,</mo><mi>F</mi><mo>)</mo></math></span> is maximal lineable in <span><math><mi>L</mi><mo>(</mo><mi>E</mi><mo>,</mo><mi>F</mi><mo>)</mo></math></span>. Our results provide a more comprehensive answer to a question posed by Botelho, Diniz and Pellegrino <span><span>[12]</span></span>.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"551 1","pages":"Article 129650"},"PeriodicalIF":1.2,"publicationDate":"2025-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144083777","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Antonio Azzollini , Alessio Pomponio , Simone Secchi
{"title":"On the embedding of weighted Sobolev spaces with applications to a planar nonlinear Schrödinger equation","authors":"Antonio Azzollini , Alessio Pomponio , Simone Secchi","doi":"10.1016/j.jmaa.2025.129652","DOIUrl":"10.1016/j.jmaa.2025.129652","url":null,"abstract":"<div><div>In this paper we study the embedding's properties for the weighted Sobolev space <span><math><msubsup><mrow><mi>H</mi></mrow><mrow><mi>V</mi></mrow><mrow><mn>1</mn></mrow></msubsup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup><mo>)</mo></math></span> into the Lebesgue weighted space <span><math><msubsup><mrow><mi>L</mi></mrow><mrow><mi>W</mi></mrow><mrow><mi>τ</mi></mrow></msubsup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup><mo>)</mo></math></span>. Here <em>V</em> and <em>W</em> are diverging weight functions. The different behaviour of <em>V</em> with respect to <em>W</em> at infinity plays a crucial role. Particular attention is paid to the case <span><math><mi>V</mi><mo>=</mo><mi>W</mi></math></span>. This situation is very delicate since it depends strongly on the dimension and, in particular, <span><math><mi>N</mi><mo>=</mo><mn>2</mn></math></span> is somewhat a limit case. As an application, an existence result for a planar nonlinear Schrödinger equation in presence of coercive potentials is provided.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"551 1","pages":"Article 129652"},"PeriodicalIF":1.2,"publicationDate":"2025-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143948430","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}