{"title":"Roper-Suffridge type extension operators for univalent mappings revisited","authors":"Hidetaka Hamada , Gabriela Kohr , Mirela Kohr","doi":"10.1016/j.jmaa.2025.129763","DOIUrl":"10.1016/j.jmaa.2025.129763","url":null,"abstract":"<div><div>Let <em>f</em> be a normalized univalent function on the unit disc <em>U</em>, and let <span><math><mi>α</mi><mo>,</mo><mi>β</mi><mo>∈</mo><mi>R</mi></math></span>. We consider a family of operators <span><math><msub><mrow><mi>Ψ</mi></mrow><mrow><mi>α</mi><mo>,</mo><mi>β</mi></mrow></msub></math></span> that extend <em>f</em> to biholomorphic mappings defined on the unit ball <em>B</em> of a complex Hilbert space <span><math><mi>H</mi></math></span> into <span><math><mi>H</mi></math></span>, and they are given by <span><math><msub><mrow><mi>Ψ</mi></mrow><mrow><mi>α</mi><mo>,</mo><mi>β</mi></mrow></msub><mo>(</mo><mi>f</mi><mo>)</mo><mo>(</mo><mi>z</mi><mo>)</mo><mo>=</mo><mrow><mo>(</mo><mi>f</mi><mo>(</mo><msub><mrow><mi>z</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>)</mo><mo>,</mo><mi>w</mi><msup><mrow><mo>(</mo><mfrac><mrow><mi>f</mi><mo>(</mo><msub><mrow><mi>z</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>)</mo></mrow><mrow><msub><mrow><mi>z</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow></mfrac><mo>)</mo></mrow><mrow><mi>α</mi></mrow></msup><msup><mrow><mo>(</mo><msup><mrow><mi>f</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>(</mo><msub><mrow><mi>z</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>)</mo><mo>)</mo></mrow><mrow><mi>β</mi></mrow></msup><mo>)</mo></mrow></math></span>, where, for a fixed unit vector <span><math><msub><mrow><mi>e</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>∈</mo><mi>H</mi></math></span>, we use the notation <span><math><mi>z</mi><mo>=</mo><mo>(</mo><msub><mrow><mi>z</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mi>w</mi><mo>)</mo></math></span> if <span><math><mi>z</mi><mo>=</mo><msub><mrow><mi>z</mi></mrow><mrow><mn>1</mn></mrow></msub><msub><mrow><mi>e</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>+</mo><mi>w</mi></math></span> and <em>w</em> is orthogonal to <span><math><msub><mrow><mi>e</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span>. In the case <span><math><mi>α</mi><mo>=</mo><mn>0</mn></math></span> and <span><math><mi>β</mi><mo>=</mo><mn>1</mn><mo>/</mo><mn>2</mn></math></span> we obtain the Roper-Suffridge extension operator. Until now, it is only known that for the pairs <span><math><mo>(</mo><mi>α</mi><mo>,</mo><mi>β</mi><mo>)</mo><mo>∈</mo><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> such that <span><math><mn>0</mn><mo>≤</mo><mi>α</mi><mo>≤</mo><mn>1</mn></math></span>, <span><math><mn>0</mn><mo>≤</mo><mi>β</mi><mo>≤</mo><mn>1</mn><mo>/</mo><mn>2</mn></math></span> and <span><math><mi>α</mi><mo>+</mo><mi>β</mi><mo>≤</mo><mn>1</mn></math></span>, <span><math><msub><mrow><mi>Ψ</mi></mrow><mrow><mi>α</mi><mo>,</mo><mi>β</mi></mrow></msub><mo>(</mo><mi>f</mi><mo>)</mo></math></span> can be embedded as the initial element of a normal Loewner chain on <em>B</em> for any normalized univalent function <em>f</em> on <em>U</em>. In this paper, we describe a closed domain <em>D</em> in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup></math></","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"552 1","pages":"Article 129763"},"PeriodicalIF":1.2,"publicationDate":"2025-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144243617","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Polynomial convexity of the closure of bounded pseudoconvex domains and its applications in dense holomorphic curves","authors":"Sanjoy Chatterjee , Sushil Gorai","doi":"10.1016/j.jmaa.2025.129752","DOIUrl":"10.1016/j.jmaa.2025.129752","url":null,"abstract":"<div><div>In this paper, we prove that the closure of a <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>-smooth bounded strongly pseudoconvex domain is polynomially convex if it is invariant under positive time flows of a holomorphic vector field that has a globally attracting fixed point inside the domain. We also provide a sufficient condition for a bounded pseudoconvex domain so that its closure is polynomially convex. We show that if a class of bounded pseudoconvex domain Ω in <span><math><msup><mrow><mi>C</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> which are invariant under the positive time flow of certain complete holomorphic vector fields, then given any connected complex manifold <em>Y</em>, there exists a holomorphic map from the unit disc to the space of all holomorphic maps from Ω to <em>Y</em> whose image is dense in <span><math><mi>O</mi><mo>(</mo><mi>Ω</mi><mo>,</mo><mi>Y</mi><mo>)</mo></math></span>. This also yields us the existence of a <span><math><mi>O</mi><mo>(</mo><mi>Ω</mi><mo>,</mo><mi>Y</mi><mo>)</mo></math></span>-universal map for any generalized translation on Ω, which implies the hypercyclicity of certain composition operators on <span><math><mi>O</mi><mo>(</mo><mi>Ω</mi><mo>,</mo><mi>Y</mi><mo>)</mo></math></span>.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"552 1","pages":"Article 129752"},"PeriodicalIF":1.2,"publicationDate":"2025-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144298902","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Effective behavior of a time-oscillating parabolic system with non-local and equi-valued interface conditions","authors":"M. Amar , D. Andreucci , C. Timofte","doi":"10.1016/j.jmaa.2025.129753","DOIUrl":"10.1016/j.jmaa.2025.129753","url":null,"abstract":"<div><div>In this paper, we study the homogenization of a heat diffusion problem in a two-phase composite material with imperfect contact conditions on the interface separating its constituents. More precisely, we consider an equi-valued interface condition and a non-local condition, which involves a time-oscillating amplitude factor. We perform a homogenization process, leading to three different macroscopic models, depending on the value of a scaling parameter appearing in the amplitude factor.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"552 2","pages":"Article 129753"},"PeriodicalIF":1.2,"publicationDate":"2025-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144263690","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Global existence and optimal time decay for the Timoshenko system in the homogeneous critical Besov space","authors":"Lianchao Gu","doi":"10.1016/j.jmaa.2025.129749","DOIUrl":"10.1016/j.jmaa.2025.129749","url":null,"abstract":"<div><div>We construct the global existence solutions to the classical Timoshenko system in the homogeneous spatially critical Besov space <span><math><msubsup><mrow><mover><mrow><mi>B</mi></mrow><mrow><mo>˙</mo></mrow></mover></mrow><mrow><mn>2</mn><mo>,</mo><mn>1</mn></mrow><mrow><mn>1</mn><mo>/</mo><mn>2</mn></mrow></msubsup><mo>∩</mo><msubsup><mrow><mover><mrow><mi>B</mi></mrow><mrow><mo>˙</mo></mrow></mover></mrow><mrow><mn>2</mn><mo>,</mo><mn>1</mn></mrow><mrow><mn>3</mn><mo>/</mo><mn>2</mn></mrow></msubsup></math></span>. In comparison with the works in <span><span>[16]</span></span>, we use hybrid Besov spaces with different regularity exponents in low and high frequency. Moreover, under the additional condition that the low-frequency part of the initial perturbation is bounded in <span><math><msubsup><mrow><mover><mrow><mi>B</mi></mrow><mrow><mo>˙</mo></mrow></mover></mrow><mrow><mn>2</mn><mo>,</mo><mo>∞</mo></mrow><mrow><mo>−</mo><msub><mrow><mi>σ</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow></msubsup></math></span> with <span><math><msub><mrow><mi>σ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>∈</mo><mo>(</mo><mo>−</mo><mn>1</mn><mo>/</mo><mn>2</mn><mo>,</mo><mn>1</mn><mo>/</mo><mn>2</mn><mo>]</mo></math></span>, we derive optimal time-decay estimates for the global solution using time-weighted Lyapunov energy methods. This approach not only allows us to obtain the optimal time-decay rates but also to remove the smallness condition on the low frequencies of the initial data, providing new insights into the long-time behavior of solutions to the Timoshenko equation.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"552 2","pages":"Article 129749"},"PeriodicalIF":1.2,"publicationDate":"2025-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144263689","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Characterizations of the canonical trace on full matrix algebras","authors":"Mohammad Sal Moslehian , Airat M. Bikchentaev","doi":"10.1016/j.jmaa.2025.129764","DOIUrl":"10.1016/j.jmaa.2025.129764","url":null,"abstract":"<div><div>We establish that a positive linear functional on the full matrix algebra <span><math><msub><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> is a positive multiple of the canonical trace if and only if <span><math><mi>φ</mi><mo>(</mo><mi>A</mi><mo>)</mo><mo>=</mo><mi>φ</mi><mo>(</mo><mo>|</mo><mi>A</mi><mo>|</mo><mo>)</mo></math></span> implies that <em>A</em> is positive semidefinite. Furthermore, we characterize the canonical trace on <span><math><msub><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> among all positive linear functionals <em>φ</em> on <span><math><msub><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> with <span><math><mi>φ</mi><mo>(</mo><mi>I</mi><mo>)</mo><mo>=</mo><mi>n</mi></math></span> via Yang's inequality <span><math><mi>φ</mi><msup><mrow><mo>(</mo><msup><mrow><mi>A</mi></mrow><mrow><mn>1</mn><mo>/</mo><mn>2</mn></mrow></msup><mi>B</mi><msup><mrow><mi>A</mi></mrow><mrow><mn>1</mn><mo>/</mo><mn>2</mn></mrow></msup><mo>)</mo></mrow><mrow><mn>1</mn><mo>/</mo><mn>2</mn></mrow></msup><mo>≤</mo><mi>φ</mi><mo>(</mo><mi>A</mi><mo>+</mo><mi>B</mi><mo>)</mo><mo>/</mo><mn>2</mn></math></span>, where <span><math><mi>A</mi><mo>,</mo><mi>B</mi><mo>∈</mo><msub><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> are positive semidefinite matrices.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"552 2","pages":"Article 129764"},"PeriodicalIF":1.2,"publicationDate":"2025-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144241385","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A Nehari type theorem and applications to Toeplitz+Hankel operators on the Dirichlet space","authors":"Young Joo Lee","doi":"10.1016/j.jmaa.2025.129750","DOIUrl":"10.1016/j.jmaa.2025.129750","url":null,"abstract":"<div><div>We study the characterization problem for Hankel operators on the Dirichlet space in relation to Nehari's well-known result for Hankel operators on the Hardy space. We show that the operator equation <span><math><msub><mrow><mi>T</mi></mrow><mrow><mover><mrow><mi>z</mi></mrow><mrow><mo>¯</mo></mrow></mover></mrow></msub><mi>H</mi><mo>=</mo><mi>H</mi><msub><mrow><mi>T</mi></mrow><mrow><mi>z</mi></mrow></msub></math></span> completely characterizes Hankel operators among all bounded operators on the Dirichlet space where <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>u</mi></mrow></msub></math></span> denotes the Toeplitz operator with symbol <em>u</em>. As an application, we obtain a characterization of when a finite sum of products of two Toeplitz+Hankel operators is itself a Toeplitz+Hankel operator.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"552 1","pages":"Article 129750"},"PeriodicalIF":1.2,"publicationDate":"2025-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144243616","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Almost reducibility and growth of Sobolev norms of 1−d quantum harmonic oscillator with polynomial time quasi-periodic perturbations","authors":"Yue Mi","doi":"10.1016/j.jmaa.2025.129751","DOIUrl":"10.1016/j.jmaa.2025.129751","url":null,"abstract":"<div><div>For 1–d quantum harmonic oscillator perturbed by a time quasi-periodic non-homogeneous quadratic polynomials in <span><math><mo>(</mo><mi>x</mi><mo>,</mo><mo>−</mo><mi>i</mi><msub><mrow><mo>∂</mo></mrow><mrow><mi>x</mi></mrow></msub><mo>)</mo></math></span>, we prove its almost reducibility. Based on this theory, we have shown the growth of Sobolev norms of solutions. In fact it will have an <span><math><mi>o</mi><mo>(</mo><msup><mrow><mi>t</mi></mrow><mrow><mi>s</mi></mrow></msup><mo>)</mo></math></span>-upper bound for the <span><math><msup><mrow><mi>H</mi></mrow><mrow><mi>s</mi></mrow></msup></math></span>-norm when the equation is non-reducible. The results are proved via the utilization of Schrödinger and Metaplectic representation.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"552 2","pages":"Article 129751"},"PeriodicalIF":1.2,"publicationDate":"2025-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144254048","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A priori estimates for Monge-Ampère equation with a gradient term","authors":"Pang Xu, Xin-An Ren","doi":"10.1016/j.jmaa.2025.129765","DOIUrl":"10.1016/j.jmaa.2025.129765","url":null,"abstract":"<div><div>This paper is concerned with the Monge-Ampère equation with a gradient term on Kähler manifolds. It is proved that the <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span> estimate and <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> estimate depend only on the lower bound of the solutions. Moreover, the constant in <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span> estimate is relaxed to <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn><mi>n</mi></mrow></msup></math></span> norm.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"552 2","pages":"Article 129765"},"PeriodicalIF":1.2,"publicationDate":"2025-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144254049","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Magno B. Alves , Daniel H.T. Franco , Emmanuel Pereira
{"title":"Existence and exponential decay of bound state solutions for the Brown-Ravenhall operator with a critical potential for non-confining systems in genuinely two-dimensional spaces","authors":"Magno B. Alves , Daniel H.T. Franco , Emmanuel Pereira","doi":"10.1016/j.jmaa.2025.129754","DOIUrl":"10.1016/j.jmaa.2025.129754","url":null,"abstract":"<div><div>We study the Brown-Ravenhall operator (the suitably projected Dirac operator) in dimension 2 using the Foldy-Wouthuysen unitary transformation. This allows us to write the operator in diagonalized form, so that the kinetic energy is equal to <span><math><mo>〈</mo><mi>ψ</mi><mo>,</mo><msup><mrow><mo>(</mo><mo>−</mo><mi>Δ</mi><mo>+</mo><msup><mrow><mi>m</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></mrow><mrow><mn>1</mn><mo>/</mo><mn>2</mn></mrow></msup><mi>ψ</mi><mo>〉</mo></math></span>. This suggests that we use some interesting results found in recent literature for equations driven by the fractional operator <span><math><msup><mrow><mo>(</mo><mo>−</mo><mi>Δ</mi><mo>+</mo><msup><mrow><mi>m</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></mrow><mrow><mi>s</mi></mrow></msup></math></span> with <span><math><mi>s</mi><mo>∈</mo><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo></math></span> and <span><math><mi>m</mi><mo>></mo><mn>0</mn></math></span>. Here, we are interested in the Brown-Ravenhall operator perturbed by a short-range attractive potential given by a Bessel-Macdonald function (also known as <span><math><msub><mrow><mi>K</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span>-potential) to model relativistic effects in graphene. The existence of bound states for the Brown-Ravenhall operator with the <span><math><msub><mrow><mi>K</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span>-potential is proven using a variant of the Caffarelli-Silvestre extension method, which permits to characterize <span><math><msup><mrow><mo>(</mo><mo>−</mo><mi>Δ</mi><mo>+</mo><msup><mrow><mi>m</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></mrow><mrow><mn>1</mn><mo>/</mo><mn>2</mn></mrow></msup></math></span> as an operator that maps a Dirichlet boundary condition to a Neumann-type condition via an extension problem in the upper-half space <span><math><msubsup><mrow><mi>R</mi></mrow><mrow><mo>+</mo></mrow><mrow><mn>3</mn></mrow></msubsup></math></span>. In this process, the minimization occurs for an auxiliary energy functional associated with the weak solutions of the Neumann problem, defined on <span><math><msup><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msup><mo>(</mo><msubsup><mrow><mi>R</mi></mrow><mrow><mo>+</mo></mrow><mrow><mn>3</mn></mrow></msubsup><mo>;</mo><mi>C</mi><mo>)</mo></math></span>. In addition, the lower bound for the smallest eigenvalue is established via Herbst operator. Exponential decay, in an <span><math><msub><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> sense, of the bound states of the Brown-Ravenhall operator with the <span><math><msub><mrow><mi>K</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span>-potential is also investigated.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"552 2","pages":"Article 129754"},"PeriodicalIF":1.2,"publicationDate":"2025-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144241386","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Existence and nonuniqueness of solutions for flow driven by a revolving hybrid nanofluid above a stationary disk","authors":"Dibjyoti Mondal, Abhijit Das, Amit Kumar Pandey","doi":"10.1016/j.jmaa.2025.129743","DOIUrl":"10.1016/j.jmaa.2025.129743","url":null,"abstract":"<div><div>The qualitative and quantitative properties of solutions associated with the nonlinear and coupled boundary value problems (BVPs) that describe the thermo-hydrodynamics of a hybrid nanofluid rotating over a stationary disk with suction are under investigation. First, essential a priori boundedness conditions are derived, and proof guaranteeing the existence of a solution to these BVPs is given. Next, numerically, it is shown that solutions to these equations are non-unique, exhibiting two solution branches to the problem within a particular range of the suction parameter. The influence of relevant flow parameters on radial and tangential shear stresses, Nusselt number, dimensionless velocity, and temperature profiles is presented graphically for both branches of the solution, with a detailed discussion of their physical significance. The results show that the oscillatory behavior of the first solution decreases with increased suction, whereas, in contrast, the second solution branch continues to oscillate as suction increases and extends indefinitely. Furthermore, a linear temporal stability analysis shows that only the first solution branch is stable, while the second branch is unstable. Finally, an asymptotic expression providing insights into the large suction behavior is also derived.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"552 2","pages":"Article 129743"},"PeriodicalIF":1.2,"publicationDate":"2025-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144254047","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}