{"title":"On the law of large numbers and convergence rates for the discrete Fourier transform of random fields","authors":"Vishakha","doi":"10.1016/j.jmaa.2025.129851","DOIUrl":"10.1016/j.jmaa.2025.129851","url":null,"abstract":"<div><div>We study the Marcinkiewicz-Zygmund strong law of large numbers for the cubic partial sums of the discrete Fourier transform of random fields. We establish Marcinkiewicz-Zygmund types rate of convergence for the discrete Fourier transform of random fields under weaker conditions than identical distribution.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"553 1","pages":"Article 129851"},"PeriodicalIF":1.2,"publicationDate":"2025-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144571125","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Muhittin Evren Aydin , Rafael López , Gabriel-Eduard Vîlcu
{"title":"Classification of separable hypersurfaces with constant sectional curvature","authors":"Muhittin Evren Aydin , Rafael López , Gabriel-Eduard Vîlcu","doi":"10.1016/j.jmaa.2025.129859","DOIUrl":"10.1016/j.jmaa.2025.129859","url":null,"abstract":"<div><div>In this paper, we give a full classification of the separable hypersurfaces of constant sectional curvature in the Euclidean <em>n</em>-space <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span>. In dimension <span><math><mi>n</mi><mo>=</mo><mn>3</mn></math></span>, this classification was solved by Hasanis and López (2021) <span><span>[18]</span></span>. When <span><math><mi>n</mi><mo>></mo><mn>3</mn></math></span>, we prove that the separable hypersurfaces of null sectional curvature are three particular families of such hypersurfaces. Finally, we prove that hyperspheres are the only separable hypersurfaces with nonzero constant sectional curvature.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"553 1","pages":"Article 129859"},"PeriodicalIF":1.2,"publicationDate":"2025-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144581212","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Non-uniform dependence for the two-component Camassa-Holm shallow water system","authors":"Jinlu Li , Yanghai Yu , Weipeng Zhu","doi":"10.1016/j.jmaa.2025.129853","DOIUrl":"10.1016/j.jmaa.2025.129853","url":null,"abstract":"<div><div>In this paper, we consider the initial value problem to the two-component Camassa-Holm equation on the line. We give a new approach to studying non-uniform dependence on initial data. We prove that the solution map of this problem is not uniformly continuous in Sobolev spaces <span><math><msup><mrow><mi>H</mi></mrow><mrow><mi>s</mi></mrow></msup><mo>(</mo><mi>R</mi><mo>)</mo><mo>×</mo><msup><mrow><mi>H</mi></mrow><mrow><mi>s</mi><mo>−</mo><mn>1</mn></mrow></msup><mo>(</mo><mi>R</mi><mo>)</mo></math></span> with <span><math><mi>s</mi><mo>></mo><mn>3</mn><mo>/</mo><mn>2</mn></math></span>.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"553 2","pages":"Article 129853"},"PeriodicalIF":1.2,"publicationDate":"2025-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144589325","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A novel approach to induce chaos for vibratory PDE systems","authors":"Zi-Qing Tian , Hongyinping Feng","doi":"10.1016/j.jmaa.2025.129856","DOIUrl":"10.1016/j.jmaa.2025.129856","url":null,"abstract":"<div><div>In this paper, we propose a novel method for inducing chaos in infinite-dimensional systems. The new approach, referred to as the kernel function method, regulates a carefully chosen performance output to exhibit chaotic dynamics governed by a pre-specified ODE system. Unlike the method of characteristics, the proposed technique is applicable not only to wave equations but also to the Euler-Bernoulli beam equation. Moreover, by appropriately selecting the pre-specified chaotic ODE system, a wide variety of chaotic oscillations can be generated. Specifically, by choosing the well-known Van der Pol equation, we derive a new nonlinear boundary condition for an Euler-Bernoulli beam that demonstrates chaotic oscillations. Numerical simulations are provided to help visualize the theoretical results.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"553 1","pages":"Article 129856"},"PeriodicalIF":1.2,"publicationDate":"2025-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144581171","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Ground state for a system of nonlinear Schrödinger equations with three waves interaction and critical nonlinearities","authors":"Hidenori Kokufukata , Hiroshi Matsuzawa","doi":"10.1016/j.jmaa.2025.129854","DOIUrl":"10.1016/j.jmaa.2025.129854","url":null,"abstract":"<div><div>In this paper, we consider a system of nonlinear Schrödinger equations with three waves interaction and critical exponents. We discuss the existence of a nontrivial ground state solution. This problem has been studied by several researchers, for example Pomponio (2010) <span><span>[7]</span></span> and Kurata and Osada (2021) <span><span>[2]</span></span> in the case where all the exponents of the nonlinearities are subcritical. In this paper, we will demonstrate that even when some of or all of the exponents of the nonlinearities admit the Sobolev critical exponent, a nontrivial ground state solution can still be obtained if the coupling constant is sufficiently large. Additionally, we show that when the coupling constant is large enough, the ground state solution is a vector solution, namely a solution <span><math><mo>(</mo><msub><mrow><mi>u</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>u</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><msub><mrow><mi>u</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>)</mo></math></span> that satisfies <span><math><msub><mrow><mi>u</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>≠</mo><mn>0</mn></math></span> for all <span><math><mi>i</mi><mo>=</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>,</mo><mn>3</mn></math></span>. Our method is to consider a minimization problem on the Nehari manifold.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"553 1","pages":"Article 129854"},"PeriodicalIF":1.2,"publicationDate":"2025-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144581172","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Blowup of classical solutions for two-dimensional transverse magnetohydrodynamic equations","authors":"Jianli Liu , Ziyi Qin , Manwai Yuen","doi":"10.1016/j.jmaa.2025.129849","DOIUrl":"10.1016/j.jmaa.2025.129849","url":null,"abstract":"<div><div>In this paper, we investigate the blowup phenomenon of solutions for two-dimensional transverse magnetohydrodynamic (MHD) equations. By using the integration method, we first prove that the classical solutions for <span><math><mi>γ</mi><mo>≥</mo><mn>2</mn></math></span> of the transverse MHD equations with the initial bounded region <span><math><mi>Ω</mi><mrow><mo>(</mo><mn>0</mn><mo>)</mo></mrow></math></span> surrounded by vacuum will blow up in finite time. Furthermore, we also establish the finite-time singularity formation of the classical solutions for <span><math><mi>γ</mi><mo>></mo><mn>1</mn></math></span> to the transverse MHD equations with a class of non-vacuum initial values.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"553 2","pages":"Article 129849"},"PeriodicalIF":1.2,"publicationDate":"2025-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144632890","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Complex normal forms for planar double boundary focus points","authors":"Marina Esteban , Emilio Freire , Enrique Ponce , Francisco Torres","doi":"10.1016/j.jmaa.2025.129861","DOIUrl":"10.1016/j.jmaa.2025.129861","url":null,"abstract":"<div><div>We consider planar piecewise smooth systems constituted by two vector fields with a straight line as separation boundary between them. It is assumed that the origin, which belongs to the boundary, is an isolated equilibrium of center-focus type for both vector fields. Working in the complex setting, firstly we obtain a general normal form with only one term for each degree. Next, we exploit such a normal form, which turns to be very suitable for computing the Lyapunov constants that characterize the cyclicity of the origin. To illustrate the usefulness of the approach, some significative examples regarding piecewise quadratic Liénard systems are considered. In particular, we show how a piecewise quadratic system with an attractive weak focus from both sides can give rise to a repulsive weak focus.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"553 2","pages":"Article 129861"},"PeriodicalIF":1.2,"publicationDate":"2025-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144572746","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Global solvability and unboundedness in a fully parabolic quasilinear chemotaxis model with indirect signal production","authors":"Xuan Mao , Yuxiang Li","doi":"10.1016/j.jmaa.2025.129857","DOIUrl":"10.1016/j.jmaa.2025.129857","url":null,"abstract":"<div><div>This paper is concerned with a quasilinear chemotaxis model with indirect signal production, given by <span><math><msub><mrow><mi>u</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>=</mo><mi>∇</mi><mo>⋅</mo><mo>(</mo><mi>D</mi><mo>(</mo><mi>u</mi><mo>)</mo><mi>∇</mi><mi>u</mi><mo>−</mo><mi>S</mi><mo>(</mo><mi>u</mi><mo>)</mo><mi>∇</mi><mi>v</mi><mo>)</mo></math></span>, <span><math><msub><mrow><mi>v</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>=</mo><mi>Δ</mi><mi>v</mi><mo>−</mo><mi>v</mi><mo>+</mo><mi>w</mi></math></span> and <span><math><msub><mrow><mi>w</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>=</mo><mi>Δ</mi><mi>w</mi><mo>−</mo><mi>w</mi><mo>+</mo><mi>u</mi></math></span>, posed in a bounded smooth domain <span><math><mi>Ω</mi><mo>⊂</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span>, subjected to homogeneous Neumann boundary conditions. Here, the nonlinear diffusion <em>D</em> and sensitivity <em>S</em> generalize the prototypes <span><math><mi>D</mi><mo>(</mo><mi>s</mi><mo>)</mo><mo>=</mo><msup><mrow><mo>(</mo><mi>s</mi><mo>+</mo><mn>1</mn><mo>)</mo></mrow><mrow><mo>−</mo><mi>α</mi></mrow></msup></math></span> and <span><math><mi>S</mi><mo>(</mo><mi>s</mi><mo>)</mo><mo>=</mo><msup><mrow><mo>(</mo><mi>s</mi><mo>+</mo><mn>1</mn><mo>)</mo></mrow><mrow><mi>β</mi><mo>−</mo><mn>1</mn></mrow></msup><mi>s</mi></math></span>. Ding and Wang (2019) <span><span>[8]</span></span> showed that the system possesses a globally bounded classical solution if <span><math><mi>α</mi><mo>+</mo><mi>β</mi><mo><</mo><mi>min</mi><mo></mo><mo>{</mo><mn>1</mn><mo>+</mo><mn>2</mn><mo>/</mo><mi>n</mi><mo>,</mo><mn>4</mn><mo>/</mo><mi>n</mi><mo>}</mo></math></span>. In contrast, for the Jäger-Luckhaus variant of this model, in which the second equation is replaced by <span><math><mn>0</mn><mo>=</mo><mi>Δ</mi><mi>v</mi><mo>−</mo><msub><mrow><mo>∫</mo></mrow><mrow><mi>Ω</mi></mrow></msub><mi>w</mi><mo>/</mo><mo>|</mo><mi>Ω</mi><mo>|</mo><mo>+</mo><mi>w</mi></math></span>, Tao and Winkler (2025) <span><span>[36]</span></span> established that if <span><math><mi>α</mi><mo>+</mo><mi>β</mi><mo>></mo><mn>4</mn><mo>/</mo><mi>n</mi></math></span> and <span><math><mi>β</mi><mo>></mo><mn>2</mn><mo>/</mo><mi>n</mi></math></span> for <span><math><mi>n</mi><mo>≥</mo><mn>3</mn></math></span>, with radial assumptions, the variant admits finite-time blow-up solutions. We focus on the case <span><math><mi>β</mi><mo><</mo><mn>2</mn><mo>/</mo><mi>n</mi></math></span> and prove that the assumption <span><math><mi>β</mi><mo><</mo><mn>2</mn><mo>/</mo><mi>n</mi></math></span> for <span><math><mi>n</mi><mo>≥</mo><mn>2</mn></math></span> is sufficient for global solvability of classical solutions. Furthermore, if <span><math><mi>α</mi><mo>+</mo><mi>β</mi><mo>></mo><mn>4</mn><mo>/</mo><mi>n</mi></math></span> for <span><math><mi>n</mi><mo>≥</mo><mn>4</mn></math></span>, then radially symmetric initial data with large negative energy lead to blo","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"553 1","pages":"Article 129857"},"PeriodicalIF":1.2,"publicationDate":"2025-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144571126","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Dynamics of a periodic switched pest management model under the influence of fear effect","authors":"Hongyan Sun, Jianjun Jiao, Lin Wu","doi":"10.1016/j.jmaa.2025.129860","DOIUrl":"10.1016/j.jmaa.2025.129860","url":null,"abstract":"<div><div>Pest management in agroecosystems requires balancing ecological sustainability. Our study pioneers a novel pest management model with fear effect, which dynamically switches between group defense and Ivlev-type functional responses, incorporating impulsive nonlinear release strategies and constant release strategies. This computational framework simulates pest population dynamics under combined biological and chemical control regimes. The model incorporates stage-specific dynamics, distinguishing between high-density and low-density stages of the pest, while synchronizing pulsed actions such as chemical treatments with the cycle of biological manipulation. Using theories of impulsive differential equations, we derive threshold conditions governing the global asymptotic stability of the pest-eradication periodic solution and the permanence of the system. Through numerical simulations we confirm the rationality of these conditions. Ultimately, our research demonstrates the importance of chemical versus biological control (relying on density and constant release of natural enemies) in different functional response-switching pest management models for the sustainability of agricultural resources, and our work provides new avenues for pest management.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"553 2","pages":"Article 129860"},"PeriodicalIF":1.2,"publicationDate":"2025-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144614856","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Unique continuation for a gradient inequality with Ln potential","authors":"Adam Coffman, Yifei Pan, Yuan Zhang","doi":"10.1016/j.jmaa.2025.129847","DOIUrl":"10.1016/j.jmaa.2025.129847","url":null,"abstract":"<div><div>We establish a unique continuation property for solutions of the differential inequality <span><math><mo>|</mo><mi>∇</mi><mi>u</mi><mo>|</mo><mo>≤</mo><mi>V</mi><mo>|</mo><mi>u</mi><mo>|</mo></math></span>, where <em>V</em> is locally <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> integrable on a domain in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span>. A stronger uniqueness result is obtained if in addition the solutions are locally Lipschitz. One application is a finite order vanishing property in the <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> sense for the exponential of <span><math><msup><mrow><mi>W</mi></mrow><mrow><mn>1</mn><mo>,</mo><mi>n</mi></mrow></msup></math></span> functions. We further discuss related results for the Cauchy-Riemann operator <span><math><mover><mrow><mo>∂</mo></mrow><mrow><mo>¯</mo></mrow></mover></math></span> and characterize the vanishing order for smooth extension of holomorphic functions across the boundary.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"553 1","pages":"Article 129847"},"PeriodicalIF":1.2,"publicationDate":"2025-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144571655","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}